Advertisements
Advertisements
प्रश्न
Let R be a relation defined on the set of natural numbers N as
R = {(x, y) : x, y ∈ N, 2x + y = 41}
Find the domain and range of R. Also, verify whether R is (i) reflexive, (ii) symmetric (iii) transitive.
उत्तर
Domain of R is the values of x and range of R is the values of y that together should satisfy 2x+y = 41.
So,
Domain of R = {1, 2, 3, 4, ... , 20}
Range of R = {1, 3, 5, ... , 37, 39}
Reflexivity : Let x be an arbitrary element of R. Then,
x ∈ R
⇒ 2x+x = 41 cannot be true.
⇒ (x, x) ∉ R
So, R is not reflexive.
Symmetry :
Let (x,y) ∈ R.Then,
2x+y = 41
⇒ 2y+x = 41
⇒(y, x)∉R
So, R is not symmetric.
Transitivity :
Let (x, y) and (y, z)∈R
⇒ 2x+y = 41 and 2y + z = 41
⇒ 2x+z = 2x+ 41− 2y 41−y−2y = 41−3y
⇒ (x, z) ∉ R
Thus, R is not transitive.
APPEARS IN
संबंधित प्रश्न
determination of whether the following relations are reflexive, symmetric, and transitive:
Relation R in the set A = {1, 2, 3...13, 14} defined as R = {(x,y):3x - y = 0}
determination of whether the following relations are reflexive, symmetric, and transitive:
Relation R in the set A = {1, 2, 3, 4, 5, 6} as R = {(x, y): y is divisible by x}
Show that the relation R in R defined as R = {(a, b): a ≤ b}, is reflexive and transitive but not symmetric.
Check whether the relation R in R defined by R = {(a, b): a ≤ b3} is reflexive, symmetric, or transitive.
Given an example of a relation. Which is Reflexive and transitive but not symmetric.
Show that the relation R defined in the set A of all polygons as R = {(P1, P2): P1 and P2have same number of sides}, is an equivalence relation. What is the set of all elements in A related to the right angle triangle T with sides 3, 4 and 5?
Let L be the set of all lines in XY plane and R be the relation in L defined as R = {(L1, L2): L1 is parallel to L2}. Show that R is an equivalence relation. Find the set of all lines related to the line y = 2x + 4.
Let A = {x ∈ Z : 0 ≤ x ≤ 12}. Show that R = {(a, b) : a, b ∈ A, |a – b| is divisible by 4}is an equivalence relation. Find the set of all elements related to 1. Also write the equivalence class [2]
Let A be the set of all human beings in a town at a particular time. Determine whether of the following relation is reflexive, symmetric and transitive:
R = {(x, y) : x is wife of y}
Test whether the following relation R3 is (i) reflexive (ii) symmetric and (iii) transitive:
R3 on R is defined by (a, b) ∈ R3 `⇔` a2 – 4ab + 3b2 = 0.
Defines a relation on N :
x > y, x, y ∈ N
Determine the above relation is reflexive, symmetric and transitive.
Show that the relation R on the set A = {x ∈ Z ; 0 ≤ x ≤ 12}, given by R = {(a, b) : a = b}, is an equivalence relation. Find the set of all elements related to 1.
Let S be a relation on the set R of all real numbers defined by
S = {(a, b) ∈ R × R : a2 + b2 = 1}
Prove that S is not an equivalence relation on R.
If R and S are transitive relations on a set A, then prove that R ∪ S may not be a transitive relation on A.
Define an equivalence relation ?
Write the smallest equivalence relation on the set A = {1, 2, 3} ?
R is a relation on the set Z of integers and it is given by
(x, y) ∈ R ⇔ | x − y | ≤ 1. Then, R is ______________ .
A relation ϕ from C to R is defined by x ϕ y ⇔ | x | = y. Which one is correct?
If R is the largest equivalence relation on a set A and S is any relation on A, then _____________ .
S is a relation over the set R of all real numbers and it is given by (a, b) ∈ S ⇔ ab ≥ 0. Then, S is _______________ .
Mark the correct alternative in the following question:
Let A = {1, 2, 3} and consider the relation R = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1, 3)}. Then, R is _______________ .
Mark the correct alternative in the following question:
The maximum number of equivalence relations on the set A = {1, 2, 3} is _______________ .
Mark the correct alternative in the following question:
Let R be a relation on the set N of natural numbers defined by nRm if n divides m. Then, R is _____________ .
Mark the correct alternative in the following question:
Consider a non-empty set consisting of children in a family and a relation R defined as aRb if a is brother of b. Then, R is _____________ .
Show that the relation R on the set Z of integers, given by R = {(a,b):2divides (a - b)} is an equivalence relation.
For real numbers x and y, define xRy if and only if x – y + `sqrt(2)` is an irrational number. Then the relation R is ______.
Give an example of a map which is one-one but not onto
Give an example of a map which is not one-one but onto
The following defines a relation on N:
x y is square of an integer x, y ∈ N
Determine which of the above relations are reflexive, symmetric and transitive.
Let us define a relation R in R as aRb if a ≥ b. Then R is ______.
Let A = {1, 2, 3} and R = {(1, 2), (2, 3), (1, 3)} be a relation on A. Then, R is ____________.
Let `"f"("x") = ("x" - 1)/("x" + 1),` then f(f(x)) is ____________.
Let R be a relation on the set N of natural numbers denoted by nRm ⇔ n is a factor of m (i.e. n | m). Then, R is ____________.
Let S = {1, 2, 3, 4, 5} and let A = S x S. Define the relation R on A as follows:
(a, b) R (c, d) iff ad = cb. Then, R is ____________.
Students of Grade 9, planned to plant saplings along straight lines, parallel to each other to one side of the playground ensuring that they had enough play area. Let us assume that they planted one of the rows of the saplings along the line y = x − 4. Let L be the set of all lines which are parallel on the ground and R be a relation on L.
Answer the following using the above information.
- Let R = `{ ("L"_1, "L"_2) ∶ "L"_1 bot "L"_2 "where" "L"_1, "L"_2 in "L" }` which of the following is true?
Which one of the following relations on the set of real numbers R is an equivalence relation?
A relation 'R' in a set 'A' is called reflexive, if
Let a set A = A1 ∪ A2 ∪ ... ∪ Ak, where Ai ∩ Aj = Φ for i ≠ j, 1 ≤ i, j ≤ k. Define the relation R from A to A by R = {(x, y): y ∈ Ai if and only if x ∈ Ai, 1 ≤ i ≤ k}. Then, R is ______.