Advertisements
Advertisements
प्रश्न
Let R be a relation on the set A of ordered pair of integers defined by (x, y) R (u, v) if xv = yu. Show that R is an equivalence relation.
उत्तर
We observe the following properties of R.
Reflexivity : Let (a, b) be an arbitrary element of the set A. Then,
(a, b) ∈ A
⇒ ab = ba
⇒ (a, b) R (a, b)
Thus, R is reflexive on A.
Symmetry : Let (x, y) and (u, v)∈A such that (x, y) R (u, v). Then,
xv=yu
⇒ vx=uy
⇒ uy=vx
⇒ (u, v) R (x, y)
So, R is symmetric on A.
Transitivity : Let (x, y), (u, v) and (p, q)∈R such that (x, y) R (u, v) and (u, v) R (p, q)
⇒ xv = yu and uq = vp
Multiplying the corresponding sides, we get
xv × uq = yu × vp
⇒ xq = yp
⇒ (x, y) R (p, q)
So, R is transitive on A.
Hence, R is an equivalence relation on A.
APPEARS IN
संबंधित प्रश्न
determination of whether the following relations are reflexive, symmetric, and transitive:
Relation R in the set A of human beings in a town at a particular time given by (c) R = {(x, y): x is exactly 7 cm taller than y}
Let L be the set of all lines in XY plane and R be the relation in L defined as R = {(L1, L2): L1 is parallel to L2}. Show that R is an equivalence relation. Find the set of all lines related to the line y = 2x + 4.
Let A = {1, 2, 3}. Then number of equivalence relations containing (1, 2) is
(A) 1
(B) 2
(C) 3
(D) 4
The following relation is defined on the set of real numbers. aRb if |a| ≤ b
Find whether relation is reflexive, symmetric or transitive.
Give an example of a relation which is transitive but neither reflexive nor symmetric?
Given the relation R = {(1, 2), (2, 3)} on the set A = {1, 2, 3}, add a minimum number of ordered pairs so that the enlarged relation is symmeteric, transitive and reflexive.
Show that the relation R on the set Z of integers, given by
R = {(a, b) : 2 divides a – b}, is an equivalence relation.
Let O be the origin. We define a relation between two points P and Q in a plane if OP = OQ. Show that the relation, so defined is an equivalence relation.
If R and S are transitive relations on a set A, then prove that R ∪ S may not be a transitive relation on A.
Let C be the set of all complex numbers and C0 be the set of all no-zero complex numbers. Let a relation R on C0 be defined as
`z_1 R z_2 ⇔ (z_1 -z_2)/(z_1 + z_2) ` is real for all z1, z2 ∈ C0 .
Show that R is an equivalence relation.
If A = {2, 3, 4}, B = {1, 3, 7} and R = {(x, y) : x ∈ A, y ∈ B and x < y} is a relation from A to B, then write R−1.
Define a transitive relation ?
If A = {3, 5, 7} and B = {2, 4, 9} and R is a relation given by "is less than", write R as a set ordered pairs.
A = {1, 2, 3, 4, 5, 6, 7, 8} and if R = {(x, y) : y is one half of x; x, y ∈ A} is a relation on A, then write R as a set of ordered pairs.
Let the relation R be defined on the set A = {1, 2, 3, 4, 5} by R = {(a, b) : | a2- b2 | < 8}. Write R as a set of ordered pairs.
Let the relation R be defined on N by aRb iff 2a + 3b = 30. Then write R as a set of ordered pairs
Write the smallest equivalence relation on the set A = {1, 2, 3} ?
If a relation R is defined on the set Z of integers as follows:
(a, b) ∈ R ⇔ a2 + b2 = 25. Then, domain (R) is ___________
The relation R defined on the set A = {1, 2, 3, 4, 5} by
R = {(a, b) : | a2 − b2 | < 16} is given by ______________ .
In the set Z of all integers, which of the following relation R is not an equivalence relation ?
Mark the correct alternative in the following question:
The relation S defined on the set R of all real number by the rule aSb if a b is _______________ .
Mark the correct alternative in the following question:
The maximum number of equivalence relations on the set A = {1, 2, 3} is _______________ .
Show that the relation S in the set A = [x ∈ Z : 0 ≤ x ≤ 12] given by S = [(a, b) : a, b ∈ Z, ∣a − b∣ is divisible by 3] is an equivalence relation.
If A = {a, b, c}, B = (x , y} find A × B.
If A = {a, b, c}, B = (x , y} find B × A.
Let A = {6, 8} and B = {1, 3, 5}.
Let R = {(a, b)/a∈ A, b∈ B, a – b is an even number}. Show that R is an empty relation from A to B.
Give an example of a map which is one-one but not onto
Give an example of a map which is not one-one but onto
Let T be the set of all triangles in the Euclidean plane, and let a relation R on T be defined as aRb if a is congruent to b ∀ a, b ∈ T. Then R is ______.
An integer m is said to be related to another integer n if m is a integral multiple of n. This relation in Z is reflexive, symmetric and transitive.
Let A = {1, 2, 3}, then the domain of the relation R = {(1, 1), (2, 3), (2, 1)} defined on A is ____________.
A relation R on a non – empty set A is an equivalence relation if it is ____________.
Let S = {1, 2, 3, 4, 5} and let A = S x S. Define the relation R on A as follows:
(a, b) R (c, d) iff ad = cb. Then, R is ____________.
Given set A = {1, 2, 3} and a relation R = {(1, 2), (2, 1)}, the relation R will be ____________.
Given set A = {a, b, c}. An identity relation in set A is ____________.
Students of Grade 9, planned to plant saplings along straight lines, parallel to each other to one side of the playground ensuring that they had enough play area. Let us assume that they planted one of the rows of the saplings along the line y = x − 4. Let L be the set of all lines which are parallel on the ground and R be a relation on L.
Answer the following using the above information.
- Let R = {(L1, L2 ): L1 is parallel to L2 and L1: y = x – 4} then which of the following can be taken as L2?
If A = {1,2,3}, B = {4,6,9} and R is a relation from A to B defined by ‘x is smaller than y’. The range of R is ____________.
Find: `int (x + 1)/((x^2 + 1)x) dx`
A relation in a set 'A' is known as empty relation:-
A relation 'R' in a set 'A' is called reflexive, if