English

Given an Example of a Relation. Which Is Reflexive and Symmetric but Not Transitive. - Mathematics

Advertisements
Advertisements

Question

Given an example of a relation. Which is  Reflexive and symmetric but not transitive.

Solution

Let A = {4, 6, 8}.

Define a relation R on A as:

A = {(4, 4), (6, 6), (8, 8), (4, 6), (6, 4), (6, 8), (8, 6)}

Relation R is reflexive since for every a ∈ A, (aa) ∈R i.e., (4, 4), (6, 6), (8, 8)} ∈ R.

Relation R is symmetric since (ab) ∈ R ⇒ (ba) ∈ R for all ab ∈ R.

Relation R is not transitive since (4, 6), (6, 8) ∈ R, but (4, 8) ∉ R.

Hence, relation R is reflexive and symmetric but not transitive.

shaalaa.com
  Is there an error in this question or solution?
Chapter 1: Relations and Functions - Exercise 1.1 [Page 6]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 1 Relations and Functions
Exercise 1.1 | Q 10.3 | Page 6

RELATED QUESTIONS

Let N denote the set of all natural numbers and R be the relation on N × N defined by (a, b) R (c, d) if ad (b + c) = bc (a + d). Show that R is an equivalence relation.


Let A = {x ∈ Z : 0 ≤ x ≤ 12}. Show that R = {(ab) : a∈ A, |a – b| is divisible by 4}is an equivalence relation. Find the set of all elements related to 1. Also write the equivalence class [2]


Test whether the following relation R2 is (i) reflexive (ii) symmetric and (iii) transitive:

R2 on Z defined by (a, b) ∈ R2 ⇔ |a – b| ≤ 5


If = {1, 2, 3, 4} define relations on A which have properties of being symmetric but neither reflexive nor transitive ?


Let R be a relation defined on the set of natural numbers N as
R = {(xy) : x N, 2x + y = 41}
Find the domain and range of R. Also, verify whether R is (i) reflexive, (ii) symmetric (iii) transitive.


Show that the relation '≥' on the set R of all real numbers is reflexive and transitive but not symmetric ?


Given the relation R = {(1, 2), (2, 3)} on the set A = {1, 2, 3}, add a minimum number of ordered pairs so that the enlarged relation is symmeteric, transitive and reflexive.


Defines a relation on N:

x + 4y = 10, x, y ∈ N

Determine the above relation is reflexive, symmetric and transitive.


Show that the relation R on the set Z of integers, given by
R = {(a, b) : 2 divides a – b},  is an equivalence relation.


Show that the relation R on the set A = {x ∈ Z ; 0 ≤ x ≤ 12}, given by R = {(a, b) : a = b}, is an equivalence relation. Find the set of all elements related to 1.


Let S be a relation on the set R of all real numbers defined by
S = {(a, b) ∈ R × R : a2 + b2 = 1}
Prove that S is not an equivalence relation on R.


Write the domain of the relation R defined on the set Z of integers as follows:-
(a, b) ∈ R ⇔ a2 + b2 = 25


If A = {2, 3, 4}, B = {1, 3, 7} and R = {(x, y) : x ∈ A, y ∈ B and x < y} is a relation from A to B, then write R−1.


Define a reflexive relation ?


State the reason for the relation R on the set {1, 2, 3} given by R = {(1, 2), (2, 1)} to be transitive ?


Let the relation R be defined on the set A = {1, 2, 3, 4, 5} by R = {(ab) : | a2b| < 8}. Write as a set of ordered pairs.


If A = {a, b, c}, then the relation R = {(b, c)} on A is _______________ .


Let R = {(a, a), (b, b), (c, c), (a, b)} be a relation on set A = a, b, c. Then, R is _______________ .


 If A = {a, b, c, d}, then a relation R = {(a, b), (b, a), (a, a)} on A is _____________ .


The relation R = {(1, 1), (2, 2), (3, 3)} on the set {1, 2, 3} is ___________________ .


Show that the relation R on R defined as R = {(a, b): a ≤ b}, is reflexive, and transitive but not symmetric.


If A = {a, b, c}, B = (x , y} find B × A.


If A = {a, b, c}, B = (x , y} find B × B.


Let A = {1, 2, 3, 4}, B = {4, 5, 6}, C = {5, 6}. Find A × (B ∩ C).


Let L denote the set of all straight lines in a plane. Let a relation R be defined by lRm if and only if l is perpendicular to m ∀ l, m ∈ L. Then R is ______.


For real numbers x and y, define xRy if and only if x – y + `sqrt(2)` is an irrational number. Then the relation R is ______.


Let Z be the set of integers and R be the relation defined in Z such that aRb if a – b is divisible by 3. Then R partitions the set Z into ______ pairwise disjoint subsets


Let R be relation defined on the set of natural number N as follows:
R = {(x, y): x ∈N, y ∈N, 2x + y = 41}. Find the domain and range of the relation R. Also verify whether R is reflexive, symmetric and transitive


Give an example of a map which is neither one-one nor onto


The maximum number of equivalence relations on the set A = {1, 2, 3} are ______.


If A is a finite set containing n distinct elements, then the number of relations on A is equal to ____________.


Let us define a relation R in R as aRb if a ≥ b. Then R is ____________.


A relation R in set A = {1, 2, 3} is defined as R = {(1, 1), (1, 2), (2, 2), (3, 3)}. Which of the following ordered pair in R shall be removed to make it an equivalence relation in A?


Sherlin and Danju are playing Ludo at home during Covid-19. While rolling the dice, Sherlin’s sister Raji observed and noted the possible outcomes of the throw every time belongs to set {1,2,3,4,5,6}. Let A be the set of players while B be the set of all possible outcomes.

A = {S, D}, B = {1,2,3,4,5,6}

  • Let R: B → B be defined by R = {(1,1),(1,2), (2,2), (3,3), (4,4), (5,5), (6,6)}, then R is ____________.

Students of Grade 9, planned to plant saplings along straight lines, parallel to each other to one side of the playground ensuring that they had enough play area. Let us assume that they planted one of the rows of the saplings along the line y = x − 4. Let L be the set of all lines which are parallel on the ground and R be a relation on L.

Answer the following using the above information.

  • Let R = `{ ("L"_1, "L"_2) ∶ "L"_1 bot "L"_2  "where"  "L"_1, "L"_2 in "L" }` which of the following is true?

A relation in a set 'A' is known as empty relation:-


Which of the following is/are example of symmetric


Define the relation R in the set N × N as follows:

For (a, b), (c, d) ∈ N × N, (a, b) R (c, d) if ad = bc. Prove that R is an equivalence relation in N × N.


Let A = {1, 2, 3, 4} and let R = {(2, 2), (3, 3), (4, 4), (1, 2)} be a relation on A. Then R is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×