English

Given an Example of a Relation. Which Is Reflexive and Transitive but Not Symmetric. - Mathematics

Advertisements
Advertisements

Question

Given an example of a relation. Which is Reflexive and transitive but not symmetric.

Solution

Define a relation R in R as:

R = {ab): a3 ≥ b3}

Clearly (aa) ∈ R as a3 = a3.

∴R is reflexive.

Now,

(2, 1) ∈ R (as 23 ≥ 13)

But,

(1, 2) ∉ R (as 13 < 23)

∴ R is not symmetric.

Now,

Let (ab), (bc) ∈ R.

⇒ a3 ≥ b3 and b3 ≥ c3

⇒ a3 ≥ c3

⇒ (ac) ∈ R

∴R is transitive.

Hence, relation R is reflexive and transitive but not symmetric.

shaalaa.com
  Is there an error in this question or solution?
Chapter 1: Relations and Functions - Exercise 1.1 [Page 6]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 1 Relations and Functions
Exercise 1.1 | Q 10.4 | Page 6

RELATED QUESTIONS

Show that the relation R defined in the set A of all polygons as R = {(P1P2): P1 and P2have same number of sides}, is an equivalence relation. What is the set of all elements in A related to the right angle triangle T with sides 3, 4 and 5?


Three relations R1, R2 and R3 are defined on a set A = {a, b, c} as follows:
R1 = {(a, a), (a, b), (a, c), (b, b), (b, c), (c, a), (c, b), (c, c)}
R2 = {(a, a)}
R3 = {(b, c)}
R4 = {(a, b), (b, c), (c, a)}.

Find whether or not each of the relations R1, R2, R3, R4 on A is (i) reflexive (ii) symmetric and (iii) transitive.


Test whether the following relation R1 is  (i) reflexive (ii) symmetric and (iii) transitive :

R1 on Q0 defined by (a, b) ∈ R1 ⇔ = 1/b.


Defines a relation on N:

x + 4y = 10, x, y ∈ N

Determine the above relation is reflexive, symmetric and transitive.


Let Z be the set of integers. Show that the relation
 R = {(a, b) : a, b ∈ Z and a + b is even}
is an equivalence relation on Z.


Let L be the set of all lines in XY-plane and R be the relation in L defined as R = {L1, L2) : L1 is parallel to L2}. Show that R is an equivalence relation. Find the set of all lines related to the line y= 2x + 4.


If R = {(x, y) : x2 + y2 ≤ 4; x, y ∈ Z} is a relation on Z, write the domain of R.


Define a transitive relation ?


A relation R is defined from {2, 3, 4, 5} to {3, 6, 7, 10} by : x R y ⇔ x is relatively prime to y. Then, domain of R is ______________ .


 If A = {a, b, c, d}, then a relation R = {(a, b), (b, a), (a, a)} on A is _____________ .


Show that the relation R defined by (a, b)R(c,d) ⇒ a + d = b + c   on the A x A  , where A =  {1, 2,3,...,10}  is an equivalence relation. Hence write the equivalence class [(3, 4)]; a, b, c,d ∈ A.


Show that the relation S in the set A = [x ∈ Z : 0 ≤ x ≤ 12] given by S = [(a, b) : a, b ∈ Z, ∣a − b∣ is divisible by 3] is an equivalence relation.


If A = {a, b, c}, B = (x , y} find B × A.


Let A = {1, 2, 3, 4}, B = {4, 5, 6}, C = {5, 6} Find (A × B) ∩ (A × C).


Let A = {1, 2, 3, 4}, B = {4, 5, 6}, C = {5, 6}. Find A × (B ∪ C).


Let R be a relation on the set N of natural numbers defined by nRm if n divides m. Then R is ______.


Consider the set A = {1, 2, 3} and the relation R = {(1, 2), (1, 3)}. R is a transitive relation.


Given A = {2, 3, 4}, B = {2, 5, 6, 7}. Construct an example of the following:
a mapping from A to B which is not injective


Give an example of a map which is one-one but not onto


The following defines a relation on N:
x is greater than y, x, y ∈ N
Determine which of the above relations are reflexive, symmetric and transitive.


If a relation R on the set {1, 2, 3} be defined by R = {(1, 2)}, then R is ______.


Let A = {1, 2, 3} and consider the relation R = {1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1,3)}. Then R is ______.


Let the relation R be defined on the set A = {1, 2, 3, 4, 5} by R = {(a, b) : |a2 – b2| < 8. Then R is given by ______.


Every relation which is symmetric and transitive is also reflexive.


If A is a finite set containing n distinct elements, then the number of relations on A is equal to ____________.


Let A = {1, 2, 3}, then the domain of the relation R = {(1, 1), (2, 3), (2, 1)} defined on A is ____________.


Let A = {1, 2, 3, 4, 5, 6} Which of the following partitions of A correspond to an equivalence relation on A?


Let `"f"("x") = ("x" - 1)/("x" + 1),` then f(f(x)) is ____________.


Let T be the set of all triangles in the Euclidean plane, and let a relation R on T be defined as aRb if a is congruent to b ∀ a, b ∈ T. Then R is ____________.


Let A = {1, 2, 3, …. n} and B = {a, b}. Then the number of surjections from A into B is ____________.


Let R be the relation “is congruent to” on the set of all triangles in a plane is ____________.


The relation R is defined on the set of natural numbers as {(a, b) : a = 2b}. Then, R-1 is given by ____________.


Given set A = {1, 2, 3} and a relation R = {(1, 2), (2, 1)}, the relation R will be ____________.


Sherlin and Danju are playing Ludo at home during Covid-19. While rolling the dice, Sherlin’s sister Raji observed and noted the possible outcomes of the throw every time belongs to set {1,2,3,4,5,6}. Let A be the set of players while B be the set of all possible outcomes.

A = {S, D}, B = {1,2,3,4,5,6}

  • Let R ∶ B → B be defined by R = {(x, y): y is divisible by x} is ____________.

Students of Grade 9, planned to plant saplings along straight lines, parallel to each other to one side of the playground ensuring that they had enough play area. Let us assume that they planted one of the rows of the saplings along the line y = x − 4. Let L be the set of all lines which are parallel on the ground and R be a relation on L.

Answer the following using the above information.

  • Let R = {(L1, L2 ): L1 is parallel to L2 and L1: y = x – 4} then which of the following can be taken as L2?

If A is a finite set consisting of n elements, then the number of reflexive relations on A is


Let f(x)= ax2 + bx + c be such that f(1) = 3, f(–2) = λ and f(3) = 4. If f(0) + f(1) + f(–2) + f(3) = 14, then λ is equal to ______.


Let N be the set of all natural numbers and R be a relation on N × N defined by (a, b) R (c, d) `⇔` ad = bc for all (a, b), (c, d) ∈ N × N. Show that R is an equivalence relation on N × N. Also, find the equivalence class of (2, 6), i.e., [(2, 6)].


Let L be a set of all straight lines in a plane. The relation R on L defined as 'perpendicular to' is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×