English

Show that the Relation R on the Set a = {X ∈ Z ; 0 ≤ X ≤ 12}, Given by R = {(A, B) : a = B}, is an Equivalence Relation. Find the Set of All Elements Related to 1. - Mathematics

Advertisements
Advertisements

Question

Show that the relation R on the set A = {x ∈ Z ; 0 ≤ x ≤ 12}, given by R = {(a, b) : a = b}, is an equivalence relation. Find the set of all elements related to 1.

Sum

Solution

We observe the following properties of R.

Reflexivity : Let a be an arbitrary element of A. Then,

 a ∈ R

⇒ a          [Since, every element is equal to itself]

⇒ (a, a∈ R for all ∈ A

So, R is reflexive on A.

Symmetry : Let (a, b) ∈ R

⇒ a b

⇒ a

⇒ (b, a∈ R for all a, ∈ A

So, R is symmetric on A.

Transitivity : Let (a, b) and (b, c∈ R

⇒ =b and c

⇒ b c

⇒ c

⇒ (a, c∈ R

So, R is transitive on A.

Hence, R is an equivalence relation on A.

The set of all elements related to 1 is {1}.

shaalaa.com
  Is there an error in this question or solution?
Chapter 1: Relations - Exercise 1.2 [Page 26]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 1 Relations
Exercise 1.2 | Q 8 | Page 26

RELATED QUESTIONS

determination of whether the following relations are reflexive, symmetric, and transitive:

Relation R in the set  A  = {1, 2, 3...13, 14} defined as R = {(x,y):3x - y = 0}


determination of whether the following relations are reflexive, symmetric, and transitive:

Relation R in the set A = {1, 2, 3, 4, 5, 6} as R = {(x, y): y is divisible by x}


Show that each of the relation R in the set A= {x  ∈ Z : 0 ≤ x  ≤ = 12} given by R = {(a, b) : |a - b| is a multiple of 4} is an equivalence relation. Find the set of all elements related to 1 in each case.


Given an example of a relation. Which is Reflexive and transitive but not symmetric.


Show that the relation R defined in the set A of all triangles as R = {(T1, T2): T1 is similar to T2}, is equivalence relation. Consider three right angle triangles T1 with sides 3, 4, 5, T2 with sides 5, 12, 13 and T3 with sides 6, 8, and 10. Which triangles among T1, T2 and T3 are related?


Show that the relation R defined in the set A of all polygons as R = {(P1P2): P1 and P2have same number of sides}, is an equivalence relation. What is the set of all elements in A related to the right angle triangle T with sides 3, 4 and 5?


Let L be the set of all lines in XY plane and R be the relation in L defined as R = {(L1, L2): L1 is parallel to L2}. Show that R is an equivalence relation. Find the set of all lines related to the line y = 2x + 4.


Let A = {x ∈ Z : 0 ≤ x ≤ 12}. Show that R = {(ab) : a∈ A, |a – b| is divisible by 4}is an equivalence relation. Find the set of all elements related to 1. Also write the equivalence class [2]


Let A be the set of all human beings in a town at a particular time. Determine whether of the following relation is reflexive, symmetric and transitive:

R = {(x, y) : x is wife of y}


Test whether the following relation R3 is (i) reflexive (ii) symmetric and (iii) transitive:

R3 on R is defined by (a, b) ∈ R3 `⇔` a2 – 4ab + 3b2 = 0.


The following relation is defined on the set of real numbers.  aRb if |a| ≤ b

Find whether relation is reflexive, symmetric or transitive.


Let R be a relation defined on the set of natural numbers N as
R = {(xy) : x N, 2x + y = 41}
Find the domain and range of R. Also, verify whether R is (i) reflexive, (ii) symmetric (iii) transitive.


Show that the relation '≥' on the set R of all real numbers is reflexive and transitive but not symmetric ?


Defines a relation on :

x + y = 10, xy∈ N

Determine the above relation is reflexive, symmetric and transitive.


Write the smallest reflexive relation on set A = {1, 2, 3, 4}.


If A = {2, 3, 4}, B = {1, 3, 7} and R = {(x, y) : x ∈ A, y ∈ B and x < y} is a relation from A to B, then write R−1.


Let R = {(a, a3) : a is a prime number less than 5} be a relation. Find the range of R.


Let R be the equivalence relation on the set Z of the integers given by R = { (ab) : 2 divides }.

Write the equivalence class [0].


Let R be a relation on the set N given by
R = {(a, b) : a = b − 2, b > 6}. Then,


If a relation R is defined on the set Z of integers as follows:
(a, b) ∈ R ⇔ a2 + b2 = 25. Then, domain (R) is ___________


Let R be a relation on N defined by x + 2y = 8. The domain of R is _______________ .


Let R = {(a, a), (b, b), (c, c), (a, b)} be a relation on set A = a, b, c. Then, R is _______________ .


If R is the largest equivalence relation on a set A and S is any relation on A, then _____________ .


If R is a relation on the set A = {1, 2, 3, 4, 5, 6, 7, 8, 9} given by x R y ⇔ y = 3 x, then R = _____________ .


Let A = {1, 2, 3, 4}, B = {4, 5, 6}, C = {5, 6}. Find A × (B ∪ C).


Write the relation in the Roster form and hence find its domain and range :
R1 = {(a, a2) / a is prime number less than 15}


R = {(a, b) / b = a + 1, a ∈ Z, 0 < a < 5}. Find the Range of R.


Let Z be the set of integers and R be the relation defined in Z such that aRb if a – b is divisible by 3. Then R partitions the set Z into ______ pairwise disjoint subsets


Consider the set A = {1, 2, 3} and the relation R = {(1, 2), (1, 3)}. R is a transitive relation.


Let A = {a, b, c} and the relation R be defined on A as follows:
R = {(a, a), (b, c), (a, b)}.
Then, write minimum number of ordered pairs to be added in R to make R reflexive and transitive


If A = {1, 2, 3, 4 }, define relations on A which have properties of being: 
reflexive, symmetric and transitive


Given A = {2, 3, 4}, B = {2, 5, 6, 7}. Construct an example of the following:
a mapping from A to B which is not injective


Give an example of a map which is neither one-one nor onto


The maximum number of equivalence relations on the set A = {1, 2, 3} are ______.


Let A = {1, 2, 3} and consider the relation R = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1, 3)}. Then R is ____________.


On the set N of all natural numbers, define the relation R by a R b, if GCD of a and b is 2. Then, R is


A relation 'R' in a set 'A' is called a universal relation, if each element of' A' is related to :-


If f(x + 2a) = f(x – 2a), then f(x) is:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×