Advertisements
Advertisements
Question
The following relation is defined on the set of real numbers. aRb if |a| ≤ b
Find whether relation is reflexive, symmetric or transitive.
Solution
Reflexivity :
Let a be an arbitrary element of R. Then,
a ∈ R [Since, |a|=a]
⇒ |a|≮ a
So, R is not reflexive.
Symmetry :
Let (a, b) ∈ R
⇒ |a| ≤ b
⇒ |b| ≰ a for all a, b ∈ R
⇒ (b, a) ∉ R
So, R is not symmetric.
Transitivity :
Let (a, b) ∈ R and (b, c) ∈ R
⇒ |a| ≤ b and |b| ≤ c
Multiplying the corresponding sides, we get
|a| |b| ≤ bc
⇒ |a| ≤ c
⇒ (a, c) ∈ R
Thus, R is transitive.
APPEARS IN
RELATED QUESTIONS
Check whether the relation R in R defined by R = {(a, b): a ≤ b3} is reflexive, symmetric, or transitive.
Show that the relation R in the set A of all the books in a library of a college, given by R = {(x, y): x and y have same number of pages} is an equivalence relation.
Given an example of a relation. Which is Symmetric and transitive but not reflexive.
Show that the relation R in the set A of points in a plane given by R = {(P, Q): distance of the point P from the origin is same as the distance of the point Q from the origin}, is an equivalence relation. Further, show that the set of all points related to a point P ≠ (0, 0) is the circle passing through P with origin as centre.
Show that the relation R defined in the set A of all triangles as R = {(T1, T2): T1 is similar to T2}, is equivalence relation. Consider three right angle triangles T1 with sides 3, 4, 5, T2 with sides 5, 12, 13 and T3 with sides 6, 8, and 10. Which triangles among T1, T2 and T3 are related?
If A = {1, 2, 3, 4} define relations on A which have properties of being symmetric but neither reflexive nor transitive ?
Let R be a relation defined on the set of natural numbers N as
R = {(x, y) : x, y ∈ N, 2x + y = 41}
Find the domain and range of R. Also, verify whether R is (i) reflexive, (ii) symmetric (iii) transitive.
Give an example of a relation which is symmetric and transitive but not reflexive?
Defines a relation on N :
xy is square of an integer, x, y ∈ N
Determine the above relation is reflexive, symmetric and transitive.
m is said to be related to n if m and n are integers and m − n is divisible by 13. Does this define an equivalence relation?
Write the smallest reflexive relation on set A = {1, 2, 3, 4}.
If R is a symmetric relation on a set A, then write a relation between R and R−1.
Define a symmetric relation ?
Define an equivalence relation ?
Let R = {(a, a3) : a is a prime number less than 5} be a relation. Find the range of R.
Let A = {1, 2, 3}. Then, the number of relations containing (1, 2) and (1, 3) which are reflexive and symmetric but not transitive is ______.
The relation 'R' in N × N such that
(a, b) R (c, d) ⇔ a + d = b + c is ______________ .
S is a relation over the set R of all real numbers and it is given by (a, b) ∈ S ⇔ ab ≥ 0. Then, S is _______________ .
Mark the correct alternative in the following question:
Consider a non-empty set consisting of children in a family and a relation R defined as aRb if a is brother of b. Then, R is _____________ .
Give an example of a map which is not one-one but onto
The following defines a relation on N:
x y is square of an integer x, y ∈ N
Determine which of the above relations are reflexive, symmetric and transitive.
Let us define a relation R in R as aRb if a ≥ b. Then R is ______.
Let the relation R be defined on the set A = {1, 2, 3, 4, 5} by R = {(a, b) : |a2 – b2| < 8. Then R is given by ______.
Every relation which is symmetric and transitive is also reflexive.
If f(x) = `1 - 1/"x", "then f"("f"(1/"x"))` ____________.
Let A = {x : -1 ≤ x ≤ 1} and f : A → A is a function defined by f(x) = x |x| then f is ____________.
Students of Grade 9, planned to plant saplings along straight lines, parallel to each other to one side of the playground ensuring that they had enough play area. Let us assume that they planted one of the rows of the saplings along the line y = x − 4. Let L be the set of all lines which are parallel on the ground and R be a relation on L.
Answer the following using the above information.
- Let R = {(L1, L2 ): L1 is parallel to L2 and L1: y = x – 4} then which of the following can be taken as L2?
Find: `int (x + 1)/((x^2 + 1)x) dx`
On the set N of all natural numbers, define the relation R by a R b, if GCD of a and b is 2. Then, R is
In a group of 52 persons, 16 drink tea but not coffee, while 33 drink tea. How many persons drink coffee but not tea?
The number of surjective functions from A to B where A = {1, 2, 3, 4} and B = {a, b} is
There are 600 student in a school. If 400 of them can speak Telugu, 300 can speak Hindi, then the number of students who can speak both Telugu and Hindi is:
Which of the following is/are example of symmetric
Let R = {(a, b): a = a2} for all, a, b ∈ N, then R salifies.
Let f(x)= ax2 + bx + c be such that f(1) = 3, f(–2) = λ and f(3) = 4. If f(0) + f(1) + f(–2) + f(3) = 14, then λ is equal to ______.
Let A = {3, 5}. Then number of reflexive relations on A is ______.
Let N be the set of all natural numbers and R be a relation on N × N defined by (a, b) R (c, d) `⇔` ad = bc for all (a, b), (c, d) ∈ N × N. Show that R is an equivalence relation on N × N. Also, find the equivalence class of (2, 6), i.e., [(2, 6)].
A relation R on (1, 2, 3) is given by R = {(1, 1), (2, 2), (1, 2), (3, 3), (2, 3)}. Then the relation R is ______.