हिंदी

The maximum number of equivalence relations on the set A = {1, 2, 3} are ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The maximum number of equivalence relations on the set A = {1, 2, 3} are ______.

विकल्प

  • 1

  • 2

  • 3

  • 5

MCQ
रिक्त स्थान भरें

उत्तर

The maximum number of equivalence relations on the set A = {1, 2, 3} are 5.

Explanation:

Given, set A = {1, 2, 3}

Now, the number of equivalence relations as follows

R1 = {(1, 1), (2, 2), (3, 3)}

R2 = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 1)}

R3 = {(1, 1), (2, 2), (3, 3), (1, 3), (3, 1)}

R4 = {(1, 1), (2, 2), (3, 3), (2, 3), (3, 2)}

R5 = {(1, 2, 3) ⇔ A x A = A2}

Thus, maximum number of equivalence relation is ‘5’.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Relations And Functions - Exercise [पृष्ठ १४]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 1 Relations And Functions
Exercise | Q 30 | पृष्ठ १४

संबंधित प्रश्न

determination of whether the following relations are reflexive, symmetric, and transitive:

Relation R in the set A = {1, 2, 3, 4, 5, 6} as R = {(x, y): y is divisible by x}


Show that each of the relation R in the set A= {x ∈ Z : 0 ≤ x ≤ = 12} given by R = {(a,b) : a = b} is an equivalence relation. Find the set of all elements related to 1 in each case.


Given an example of a relation. Which is Transitive but neither reflexive nor symmetric.


Given a non-empty set X, consider P (X), which is the set of all subsets of X. Define the relation R in P(X) as follows:

For subsets A, B in P(X), ARB if and only if A ⊂ B. Is R an equivalence relation on P(X)? Justify your answer.


Prove that every identity relation on a set is reflexive, but the converse is not necessarily true.


If = {1, 2, 3, 4} define relations on A which have properties of being symmetric but neither reflexive nor transitive ?


Is it true that every relation which is symmetric and transitive is also reflexive? Give reasons.


Give an example of a relation which is symmetric and transitive but not reflexive?


Let A = {abc} and the relation R be defined on A as follows: R = {(aa), (bc), (ab)}. Then, write minimum number of ordered pairs to be added in R to make it reflexive and transitive.


Defines a relation on N :

xy is square of an integer, x, y ∈ N

Determine the above relation is reflexive, symmetric and transitive.


Prove that the relation R on Z defined by
(a, b) ∈ R ⇔ a − b is divisible by 5
is an equivalence relation on Z.


Let R be a relation on the set A of ordered pair of integers defined by (x, y) R (u, v) if xv = yu. Show that R is an equivalence relation.


If R and S are relations on a set A, then prove that R and S are symmetric ⇒ R ∩ S and R ∪ S are symmetric ?


Let A = {3, 5, 7}, B = {2, 6, 10} and R be a relation from A to B defined by R = {(x, y) : x and y are relatively prime}. Then, write R and R−1.


Let R be a relation on the set N given by
R = {(a, b) : a = b − 2, b > 6}. Then,


If A = {1, 2, 3}, B = {1, 4, 6, 9} and R is a relation from A to B defined by 'x is greater than y'. The range of R is ______________ .


Mark the correct alternative in the following question:

The maximum number of equivalence relations on the set A = {1, 2, 3} is _______________ .


For the matrix A = `[(2,3),(5,7)]`, find (A + A') and verify that it is a symmetric matrix.


If A = {1, 2, 3, 4 }, define relations on A which have properties of being: 
symmetric but neither reflexive nor transitive


If A = {1, 2, 3, 4 }, define relations on A which have properties of being: 
reflexive, symmetric and transitive


The relation R on the set A = {1, 2, 3} defined as R = {{1, 1), (1, 2), (2, 1), (3, 3)} is reflexive, symmetric and transitive.


Let R be the relation on N defined as by x + 2 y = 8 The domain of R is ____________.


Which of the following is not an equivalence relation on I, the set of integers: x, y


Let A = {1, 2, 3}, then the domain of the relation R = {(1, 1), (2, 3), (2, 1)} defined on A is ____________.


Let S = {1, 2, 3, 4, 5} and let A = S x S. Define the relation R on A as follows:
(a, b) R (c, d) iff ad = cb. Then, R is ____________.


The relation R = {(1,1),(2,2),(3,3)} on {1,2,3} is ____________.


There are 600 student in a school. If 400 of them can speak Telugu, 300 can speak Hindi, then the number of students who can speak both Telugu and Hindi is:


Let N be the set of all natural numbers and R be a relation on N × N defined by (a, b) R (c, d) `⇔` ad = bc for all (a, b), (c, d) ∈ N × N. Show that R is an equivalence relation on N × N. Also, find the equivalence class of (2, 6), i.e., [(2, 6)].


If a relation R on the set {a, b, c} defined by R = {(b, b)}, then classify the relation.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×