हिंदी

Given an Example of a Relation. Which Is Symmetric but Neither Reflexive Nor Transitive. - Mathematics

Advertisements
Advertisements

प्रश्न

Given an example of a relation. Which is Symmetric but neither reflexive nor transitive.

उत्तर

Let A = {5, 6, 7}.

Define a relation R on A as R = {(5, 6), (6, 5)}.

Relation R is not reflexive as (5, 5), (6, 6), (7, 7) ∉ R.

Now, as (5, 6) ∈ R and also (6, 5) ∈ R, R is symmetric.

=> (5, 6), (6, 5) ∈ R, but (5, 5) ∉ R

∴R is not transitive.

Hence, relation R is symmetric but not reflexive or transitive.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Relations and Functions - Exercise 1.1 [पृष्ठ ६]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 1 Relations and Functions
Exercise 1.1 | Q 10.1 | पृष्ठ ६

संबंधित प्रश्न

determination of whether the following relations are reflexive, symmetric, and transitive:

Relation R in the set Z of all integers defined as
R = {(x, y): x − y is an integer}


Given an example of a relation. Which is  Reflexive and symmetric but not transitive.


Given an example of a relation. Which is Symmetric and transitive but not reflexive.


Test whether the following relation R3 is (i) reflexive (ii) symmetric and (iii) transitive:

R3 on R is defined by (a, b) ∈ R3 `⇔` a2 – 4ab + 3b2 = 0.


The following relation is defined on the set of real numbers.  aRb if |a| ≤ b

Find whether relation is reflexive, symmetric or transitive.


If = {1, 2, 3, 4} define relations on A which have properties of being reflexive, symmetric and transitive ?


Defines a relation on :
  x > y, x, y ∈  N

Determine the above relation is reflexive, symmetric and transitive.


Show that the relation R on the set Z of integers, given by
R = {(a, b) : 2 divides a – b},  is an equivalence relation.


Let Z be the set of integers. Show that the relation
 R = {(a, b) : a, b ∈ Z and a + b is even}
is an equivalence relation on Z.


Let R be a relation on the set A of ordered pair of integers defined by (x, y) R (u, v) if xv = yu. Show that R is an equivalence relation.


Let S be a relation on the set R of all real numbers defined by
S = {(a, b) ∈ R × R : a2 + b2 = 1}
Prove that S is not an equivalence relation on R.


Let C be the set of all complex numbers and Cbe the set of all no-zero complex numbers. Let a relation R on Cbe defined as

`z_1 R  z_2  ⇔ (z_1 -z_2)/(z_1 + z_2) ` is real for all z1, z2 ∈ C0 .

Show that R is an equivalence relation.


If A = {2, 3, 4}, B = {1, 3, 7} and R = {(x, y) : x ∈ A, y ∈ B and x < y} is a relation from A to B, then write R−1.


For the set A = {1, 2, 3}, define a relation R on the set A as follows:
R = {(1, 1), (2, 2), (3, 3), (1, 3)}
Write the ordered pairs to be added to R to make the smallest equivalence relation.


Let the relation R be defined on N by aRb iff 2a + 3b = 30. Then write R as a set of ordered pairs


If a relation R is defined on the set Z of integers as follows:
(a, b) ∈ R ⇔ a2 + b2 = 25. Then, domain (R) is ___________


Let R be the relation over the set of all straight lines in a plane such that  l1 R l2 ⇔ l 1⊥ l2. Then, R is _____________ .


Let A = {1, 2, 3} and B = {(1, 2), (2, 3), (1, 3)} be a relation on A. Then, R is ________________ .


Let A = {1, 2, 3, 4}, B = {4, 5, 6}, C = {5, 6}. Find A × (B ∩ C).


Let R be relation defined on the set of natural number N as follows:
R = {(x, y): x ∈N, y ∈N, 2x + y = 41}. Find the domain and range of the relation R. Also verify whether R is reflexive, symmetric and transitive


Given A = {2, 3, 4}, B = {2, 5, 6, 7}. Construct an example of the following:
a mapping from B to A


Let A = { 2, 3, 6 } Which of the following relations on A are reflexive?


Let A = {1, 2, 3} and R = {(1, 2), (2, 3), (1, 3)} be a relation on A. Then, R is ____________.


Let A = {1, 2, 3}, then the domain of the relation R = {(1, 1), (2, 3), (2, 1)} defined on A is ____________.


Let `"f"("x") = ("x" - 1)/("x" + 1),` then f(f(x)) is ____________.


A relation R in set A = {1, 2, 3} is defined as R = {(1, 1), (1, 2), (2, 2), (3, 3)}. Which of the following ordered pair in R shall be removed to make it an equivalence relation in A?


A general election of Lok Sabha is a gigantic exercise. About 911 million people were eligible to vote and voter turnout was about 67%, the highest ever


Let I be the set of all citizens of India who were eligible to exercise their voting right in the general election held in 2019. A relation ‘R’ is defined on I as follows:

R = {(V1, V2) ∶ V1, V2 ∈ I and both use their voting right in the general election - 2019}

  • The above-defined relation R is ____________.

Sherlin and Danju are playing Ludo at home during Covid-19. While rolling the dice, Sherlin’s sister Raji observed and noted the possible outcomes of the throw every time belongs to set {1,2,3,4,5,6}. Let A be the set of players while B be the set of all possible outcomes.

A = {S, D}, B = {1,2,3,4,5,6}

  • Let R be a relation on B defined by R = {(1,2), (2,2), (1,3), (3,4), (3,1), (4,3), (5,5)}. Then R is:

The relation R = {(1,1),(2,2),(3,3)} on {1,2,3} is ____________.


The relation > (greater than) on the set of real numbers is


The number of surjective functions from A to B where A = {1, 2, 3, 4} and B = {a, b} is


A relation 'R' in a set 'A' is called a universal relation, if each element of' A' is related to :-


If f(x + 2a) = f(x – 2a), then f(x) is:


Given a non-empty set X, define the relation R in P(X) as follows:

For A, B ∈ P(X), (4, B) ∈ R iff A ⊂ B. Prove that R is reflexive, transitive and not symmetric.


Let f(x)= ax2 + bx + c be such that f(1) = 3, f(–2) = λ and f(3) = 4. If f(0) + f(1) + f(–2) + f(3) = 14, then λ is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×