हिंदी

If R = {(X, Y) : X2 + Y2 ≤ 4; X, Y ∈ Z} is a Relation On Z, Write the Domain Of R. - Mathematics

Advertisements
Advertisements

प्रश्न

If R = {(x, y) : x2 + y2 ≤ 4; x, y ∈ Z} is a relation on Z, write the domain of R.

योग

उत्तर

Domain of R is the set of values of x satisfying the relation R.
As x must be an integer, we get the given values of x:

0, ±1, ±2

Thus, 

Domain of {0, ±1, ±2}

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Relations - Exercise 1.3 [पृष्ठ ३०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 1 Relations
Exercise 1.3 | Q 2 | पृष्ठ ३०

संबंधित प्रश्न

Let N denote the set of all natural numbers and R be the relation on N × N defined by (a, b) R (c, d) if ad (b + c) = bc (a + d). Show that R is an equivalence relation.


Show that the relation R in the set of real numbers, defined as R = {(a, b): a ≤ b2} is neither reflexive nor symmetric nor transitive.


Given an example of a relation. Which is Transitive but neither reflexive nor symmetric.


Show that the relation R in the set A of points in a plane given by R = {(P, Q): distance of the point P from the origin is same as the distance of the point Q from the origin}, is an equivalence relation. Further, show that the set of all points related to a point P ≠ (0, 0) is the circle passing through P with origin as centre.


Show that the relation R defined in the set A of all triangles as R = {(T1, T2): T1 is similar to T2}, is equivalence relation. Consider three right angle triangles T1 with sides 3, 4, 5, T2 with sides 5, 12, 13 and T3 with sides 6, 8, and 10. Which triangles among T1, T2 and T3 are related?


Let L be the set of all lines in XY plane and R be the relation in L defined as R = {(L1, L2): L1 is parallel to L2}. Show that R is an equivalence relation. Find the set of all lines related to the line y = 2x + 4.


Let R be the relation in the set {1, 2, 3, 4} given by R = {(1, 2), (2, 2), (1, 1), (4, 4), (1, 3), (3, 3), (3, 2)}. Choose the correct answer.


Let A be the set of all human beings in a town at a particular time. Determine whether of the following relation is reflexive, symmetric and transitive:

R = {(x, y) : x is wife of y}


If = {1, 2, 3, 4} define relations on A which have properties of being reflexive, symmetric and transitive ?


Give an example of a relation which is reflexive and symmetric but not transitive ?


Give an example of a relation which is symmetric and transitive but not reflexive?


Give an example of a relation which is symmetric but neither reflexive nor transitive?


Define a transitive relation ?


A = {1, 2, 3, 4, 5, 6, 7, 8} and if R = {(xy) : y is one half of xxy ∈ A} is a relation on A, then write R as a set of ordered pairs.


If A = {a, b, c}, then the relation R = {(b, c)} on A is _______________ .


If R is the largest equivalence relation on a set A and S is any relation on A, then _____________ .


Mark the correct alternative in the following question:

Let L denote the set of all straight lines in a plane. Let a relation R be defined by lRm if l is perpendicular to m for all l, m  L. Then, R is ______________ .


If A = {a, b, c}, B = (x , y} find A × A.


If A = {a, b, c}, B = (x , y} find B × B.


Let A = {1, 2, 3, 4}, B = {4, 5, 6}, C = {5, 6}. Find A × (B ∩ C).


Let A = {1, 2, 3, 4}, B = {4, 5, 6}, C = {5, 6} Find (A × B) ∩ (A × C).


Let A = {6, 8} and B = {1, 3, 5}.
Let R = {(a, b)/a∈ A, b∈ B, a – b is an even number}. Show that R is an empty relation from A to B.


If A = {1, 2, 3, 4 }, define relations on A which have properties of being: 
symmetric but neither reflexive nor transitive


Give an example of a map which is not one-one but onto


Give an example of a map which is neither one-one nor onto


The following defines a relation on N:
x is greater than y, x, y ∈ N
Determine which of the above relations are reflexive, symmetric and transitive.


If a relation R on the set {1, 2, 3} be defined by R = {(1, 2)}, then R is ______.


Let us define a relation R in R as aRb if a ≥ b. Then R is ______.


Let R = {(3, 1), (1, 3), (3, 3)} be a relation defined on the set A = {1, 2, 3}. Then R is symmetric, transitive but not reflexive.


An integer m is said to be related to another integer n if m is a integral multiple of n. This relation in Z is reflexive, symmetric and transitive.


A relation R on a non – empty set A is an equivalence relation if it is ____________.


A relation R in set A = {1, 2, 3} is defined as R = {(1, 1), (1, 2), (2, 2), (3, 3)}. Which of the following ordered pair in R shall be removed to make it an equivalence relation in A?


Given triangles with sides T1: 3, 4, 5; T2: 5, 12, 13; T3: 6, 8, 10; T4: 4, 7, 9 and a relation R inset of triangles defined as R = `{(Delta_1, Delta_2) : Delta_1  "is similar to"  Delta_2}`. Which triangles belong to the same equivalence class?


Given set A = {a, b, c}. An identity relation in set A is ____________.


Define the relation R in the set N × N as follows:

For (a, b), (c, d) ∈ N × N, (a, b) R (c, d) if ad = bc. Prove that R is an equivalence relation in N × N.


lf A = {x ∈ z+ : x < 10 and x is a multiple of 3 or 4}, where z+ is the set of positive integers, then the total number of symmetric relations on A is ______.


Let A = {1, 2, 3, 4} and let R = {(2, 2), (3, 3), (4, 4), (1, 2)} be a relation on A. Then R is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×