Advertisements
Advertisements
प्रश्न
Let A = {1, 2, 3, ... 9} and R be the relation in A × A defined by (a, b) R(c, d) if a + d = b + c for (a, b), (c, d) in A × A. Prove that R is an equivalence relation and also obtain the equivalent class [(2, 5)]
उत्तर
Given, A = {1, 2, 3, … 9} and (a, b) R(c, d) if a + d = b + c for (a, b), (c, d) ∈ A ×A.
Let (a, b) R(a, b)
So, a + b = b + a, ∀ a, b ∈ A which is true for any a, b ∈ A.
Thus, R is reflexive.
Let (a, b) R(c, d)
Then,
a + d = b + c
c + b = d + a
(c, d) R(a, b)
Thus, R is symmetric.
Let (a, b) R(c, d) and (c, d) R(e, f)
a + d = b + c and c + f = d + e
a + d = b + c and d + e = c + f
(a + d) – (d + e = (b + c) – (c + f)
a – e = b – f
a + f = b + e
(a, b) R(e, f)
So, R is transitive.
Therefore, R is an equivalence relation.
And, [(2, 5) = (1, 4), (2, 5), (3, 6), (4, 7), (5, 8), (6, 9)] is the equivalent class under relation R.
APPEARS IN
संबंधित प्रश्न
determination of whether the following relations are reflexive, symmetric, and transitive:
Relation R in the set A = {1, 2, 3, 4, 5, 6} as R = {(x, y): y is divisible by x}
Given a non-empty set X, consider P (X), which is the set of all subsets of X. Define the relation R in P(X) as follows:
For subsets A, B in P(X), ARB if and only if A ⊂ B. Is R an equivalence relation on P(X)? Justify your answer.
Test whether the following relation R3 is (i) reflexive (ii) symmetric and (iii) transitive:
R3 on R is defined by (a, b) ∈ R3 `⇔` a2 – 4ab + 3b2 = 0.
Defines a relation on N :
x > y, x, y ∈ N
Determine the above relation is reflexive, symmetric and transitive.
Let Z be the set of integers. Show that the relation
R = {(a, b) : a, b ∈ Z and a + b is even}
is an equivalence relation on Z.
m is said to be related to n if m and n are integers and m − n is divisible by 13. Does this define an equivalence relation?
Define a reflexive relation ?
Define a symmetric relation ?
A = {1, 2, 3, 4, 5, 6, 7, 8} and if R = {(x, y) : y is one half of x; x, y ∈ A} is a relation on A, then write R as a set of ordered pairs.
Let R be a relation on the set N given by
R = {(a, b) : a = b − 2, b > 6}. Then,
If A = {1, 2, 3}, then a relation R = {(2, 3)} on A is _____________ .
For the matrix A = `[(2,3),(5,7)]`, find (A + A') and verify that it is a symmetric matrix.
Write the relation in the Roster form and hence find its domain and range:
R2 = `{("a", 1/"a") "/" 0 < "a" ≤ 5, "a" ∈ "N"}`
In the set of natural numbers N, define a relation R as follows: ∀ n, m ∈ N, nRm if on division by 5 each of the integers n and m leaves the remainder less than 5, i.e. one of the numbers 0, 1, 2, 3 and 4. Show that R is equivalence relation. Also, obtain the pairwise disjoint subsets determined by R
Consider the set A = {1, 2, 3} and the relation R = {(1, 2), (1, 3)}. R is a transitive relation.
If A = {1, 2, 3, 4 }, define relations on A which have properties of being:
reflexive, transitive but not symmetric
If A = {1, 2, 3, 4 }, define relations on A which have properties of being:
symmetric but neither reflexive nor transitive
The following defines a relation on N:
x + 4y = 10 x, y ∈ N.
Determine which of the above relations are reflexive, symmetric and transitive.
Consider the non-empty set consisting of children in a family and a relation R defined as aRb if a is brother of b. Then R is ______.
Every relation which is symmetric and transitive is also reflexive.
The relation R on the set A = {1, 2, 3} defined as R = {{1, 1), (1, 2), (2, 1), (3, 3)} is reflexive, symmetric and transitive.
Let A = {1, 2, 3, …. n} and B = {a, b}. Then the number of surjections from A into B is ____________.
A relation R in set A = {1, 2, 3} is defined as R = {(1, 1), (1, 2), (2, 2), (3, 3)}. Which of the following ordered pair in R shall be removed to make it an equivalence relation in A?
The relation > (greater than) on the set of real numbers is
A relation in a set 'A' is known as empty relation:-
A relation 'R' in a set 'A' is called reflexive, if
Define the relation R in the set N × N as follows:
For (a, b), (c, d) ∈ N × N, (a, b) R (c, d) if ad = bc. Prove that R is an equivalence relation in N × N.
Let f(x)= ax2 + bx + c be such that f(1) = 3, f(–2) = λ and f(3) = 4. If f(0) + f(1) + f(–2) + f(3) = 14, then λ is equal to ______.
Let R = {(x, y) : x, y ∈ N and x2 – 4xy + 3y2 = 0}, where N is the set of all natural numbers. Then the relation R is ______.