English

If R is a Relation on the Set a = {1, 2, 3} Given by R = {(1, 1), (2, 2), (3, 3)}, Then R is (A) Reflexive (B) Symmetric (C) Transitive (D) All the Three Options - Mathematics

Advertisements
Advertisements

Question

If R is a relation on the set A = {1, 2, 3} given by R = {(1, 1), (2, 2), (3, 3)}, then R is ____________ .

Options

  • reflexive

  • symmetric

  • transitive

  • all the three options

MCQ

Solution

all the three options

R=(a, b) : a=b and a, ∈ }

Reflexivity: Let ∈ A. Then,

a

⇒ (a, a∈ R for all ∈ A

So, R is reflexive on A.

Symmetry Let a, ∈ A such that (a, b∈ R. Then,

(a, b∈ R

⇒ b

⇒ a

⇒ (b, a)∈ R for all ∈ A

So, R is symmetric on A.

Transitivity : Let a, b, ∈ A such that (a, b∈ R and (b, c∈ R. Then,

(a, b∈ ⇒ b

and (b, c∈ ⇒ c

⇒ c

⇒ (a, c)∈  R for all ∈ A

So, R is transitive on A.

Hence, R is an equivalence relation on A.

shaalaa.com
  Is there an error in this question or solution?
Chapter 1: Relations - Exercise 1.4 [Page 32]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 1 Relations
Exercise 1.4 | Q 19 | Page 32

RELATED QUESTIONS

Show that the relation R in the set of real numbers, defined as R = {(a, b): a ≤ b2} is neither reflexive nor symmetric nor transitive.


Show that the relation R in the set A of all the books in a library of a college, given by R = {(x, y): x and y have same number of pages} is an equivalence relation.


Let A be the set of all human beings in a town at a particular time. Determine whether of the following relation is reflexive, symmetric and transitive:

R = {(x, y) : x is wife of y}


Let A be the set of all human beings in a town at a particular time. Determine whether of the following relation is reflexive, symmetric and transitive:

R = {(x, y) : x is father of and y}


Test whether the following relation R3 is (i) reflexive (ii) symmetric and (iii) transitive:

R3 on R is defined by (a, b) ∈ R3 `⇔` a2 – 4ab + 3b2 = 0.


The following relation is defined on the set of real numbers.
aRb if a – b > 0

Find whether relation is reflexive, symmetric or transitive.


Give an example of a relation which is reflexive and transitive but not symmetric ?


Prove that the relation R on Z defined by
(a, b) ∈ R ⇔ a − b is divisible by 5
is an equivalence relation on Z.


Show that the relation R on the set A = {x ∈ Z ; 0 ≤ x ≤ 12}, given by R = {(a, b) : a = b}, is an equivalence relation. Find the set of all elements related to 1.


Show that the relation R, defined in the set A of all polygons as R = {(P1, P2) : P1 and P2 have same number of sides},
is an equivalence relation. What is the set of all elements in A related to the right-angled triangle T with sides 3, 4 and 5?


If R and S are relations on a set A, then prove that R and S are symmetric ⇒ R ∩ S and R ∪ S are symmetric ?


If R = {(x, y) : x2 + y2 ≤ 4; x, y ∈ Z} is a relation on Z, write the domain of R.


Let A = {0, 1, 2, 3} and R be a relation on A defined as
R = {(0, 0), (0, 1), (0, 3), (1, 0), (1, 1), (2, 2), (3, 0), (3, 3)}
Is R reflexive? symmetric? transitive?


Write the smallest equivalence relation on the set A = {1, 2, 3} ?


R is a relation on the set Z of integers and it is given by
(x, y) ∈ R ⇔ | x − y | ≤ 1. Then, R is ______________ .


Let A = {2, 3, 4, 5, ..., 17, 18}. Let '≃' be the equivalence relation on A × A, cartesian product of Awith itself, defined by (a, b) ≃ (c, d) if ad = bc. Then, the number of ordered pairs of the equivalence class of (3, 2) is _______________ .


The relation 'R' in N × N such that
(a, b) R (c, d) ⇔ a + d = b + c is ______________ .


A relation R is defined from {2, 3, 4, 5} to {3, 6, 7, 10} by : x R y ⇔ x is relatively prime to y. Then, domain of R is ______________ .


S is a relation over the set R of all real numbers and it is given by (a, b) ∈ S ⇔ ab ≥ 0. Then, S is _______________ .


For the matrix A = `[(2,3),(5,7)]`, find (A + A') and verify that it is a symmetric matrix.


Write the relation in the Roster form and hence find its domain and range :
R1 = {(a, a2) / a is prime number less than 15}


Given A = {2, 3, 4}, B = {2, 5, 6, 7}. Construct an example of the following:
an injective mapping from A to B


Given A = {2, 3, 4}, B = {2, 5, 6, 7}. Construct an example of the following:
a mapping from A to B which is not injective


The following defines a relation on N:
x y is square of an integer x, y ∈ N
Determine which of the above relations are reflexive, symmetric and transitive.


The following defines a relation on N:
x + 4y = 10 x, y ∈ N.
Determine which of the above relations are reflexive, symmetric and transitive.


The relation R on the set A = {1, 2, 3} defined as R = {{1, 1), (1, 2), (2, 1), (3, 3)} is reflexive, symmetric and transitive.


R = {(1, 1), (2, 2), (1, 2), (2, 1), (2, 3)} be a relation on A, then R is ____________.


A relation R on a non – empty set A is an equivalence relation if it is ____________.


Given triangles with sides T1: 3, 4, 5; T2: 5, 12, 13; T3: 6, 8, 10; T4: 4, 7, 9 and a relation R inset of triangles defined as R = `{(Delta_1, Delta_2) : Delta_1  "is similar to"  Delta_2}`. Which triangles belong to the same equivalence class?


Students of Grade 9, planned to plant saplings along straight lines, parallel to each other to one side of the playground ensuring that they had enough play area. Let us assume that they planted one of the rows of the saplings along the line y = x − 4. Let L be the set of all lines which are parallel on the ground and R be a relation on L.

Answer the following using the above information.

  • Let R = {(L1, L2 ): L1 is parallel to L2 and L1: y = x – 4} then which of the following can be taken as L2?

If A = {1,2,3}, B = {4,6,9} and R is a relation from A to B defined by ‘x is smaller than y’. The range of R is ____________.


If A is a finite set consisting of n elements, then the number of reflexive relations on A is


A relation in a set 'A' is known as empty relation:-


A relation 'R' in a set 'A' is called reflexive, if


Which of the following is/are example of symmetric


Let f(x)= ax2 + bx + c be such that f(1) = 3, f(–2) = λ and f(3) = 4. If f(0) + f(1) + f(–2) + f(3) = 14, then λ is equal to ______.


Read the following passage:

An organization conducted bike race under two different categories – Boys and Girls. There were 28 participants in all. Among all of them, finally three from category 1 and two from category 2 were selected for the final race. Ravi forms two sets B and G with these participants for his college project.
Let B = {b1, b2, b3} and G = {g1, g2}, where B represents the set of Boys selected and G the set of Girls selected for the final race.

Based on the above information, answer the following questions:

  1. How many relations are possible from B to G? (1)
  2. Among all the possible relations from B to G, how many functions can be formed from B to G? (1)
  3. Let R : B `rightarrow` B be defined by R = {(x, y) : x and y are students of the same sex}. Check if R is an equivalence relation. (2)
    OR
    A function f : B `rightarrow` G be defined by f = {(b1, g1), (b2, g2), (b3, g1)}. Check if f is bijective. Justify your answer. (2)

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×