Advertisements
Advertisements
प्रश्न
Let A = {3, 5, 7}, B = {2, 6, 10} and R be a relation from A to B defined by R = {(x, y) : x and y are relatively prime}. Then, write R and R−1.
उत्तर
R = {(x, y) : x and y are relatively prime}
Then,
R = {(3, 2), (5, 2), (7, 2), (3, 10), (7, 10), (5, 6), (7, 6)}
So, R-1 = {(2, 3), (2, 5), (2, 7), (10, 3), (10, 7), (6, 5), (6, 7)}
APPEARS IN
संबंधित प्रश्न
Show that the relation R in R defined as R = {(a, b): a ≤ b}, is reflexive and transitive but not symmetric.
Show that the relation R in the set {1, 2, 3} given by R = {(1, 2), (2, 1)} is symmetric but neither reflexive nor transitive.
Show that the relation R in the set A of all the books in a library of a college, given by R = {(x, y): x and y have same number of pages} is an equivalence relation.
Given an example of a relation. Which is Symmetric but neither reflexive nor transitive.
Show that the relation R in the set A of points in a plane given by R = {(P, Q): distance of the point P from the origin is same as the distance of the point Q from the origin}, is an equivalence relation. Further, show that the set of all points related to a point P ≠ (0, 0) is the circle passing through P with origin as centre.
Let A be the set of all human beings in a town at a particular time. Determine whether of the following relation is reflexive, symmetric and transitive :
R = {(x, y) : x and y work at the same place}
The following relation is defined on the set of real numbers.
aRb if 1 + ab > 0
Find whether relation is reflexive, symmetric or transitive.
Let R be a relation defined on the set of natural numbers N as
R = {(x, y) : x, y ∈ N, 2x + y = 41}
Find the domain and range of R. Also, verify whether R is (i) reflexive, (ii) symmetric (iii) transitive.
An integer m is said to be related to another integer n if m is a multiple of n. Check if the relation is symmetric, reflexive and transitive.
Defines a relation on N :
x + y = 10, x, y∈ N
Determine the above relation is reflexive, symmetric and transitive.
Defines a relation on N:
x + 4y = 10, x, y ∈ N
Determine the above relation is reflexive, symmetric and transitive.
Show that the relation R defined by R = {(a, b) : a – b is divisible by 3; a, b ∈ Z} is an equivalence relation.
Let n be a fixed positive integer. Define a relation R on Z as follows:
(a, b) ∈ R ⇔ a − b is divisible by n.
Show that R is an equivalence relation on Z.
Let L be the set of all lines in XY-plane and R be the relation in L defined as R = {L1, L2) : L1 is parallel to L2}. Show that R is an equivalence relation. Find the set of all lines related to the line y= 2x + 4.
Write the identity relation on set A = {a, b, c}.
If R = {(x, y) : x + 2y = 8} is a relation on N by, then write the range of R.
If A = {3, 5, 7} and B = {2, 4, 9} and R is a relation given by "is less than", write R as a set ordered pairs.
Let A = {0, 1, 2, 3} and R be a relation on A defined as
R = {(0, 0), (0, 1), (0, 3), (1, 0), (1, 1), (2, 2), (3, 0), (3, 3)}
Is R reflexive? symmetric? transitive?
If A = {a, b, c}, then the relation R = {(b, c)} on A is _______________ .
Let A = {2, 3, 4, 5, ..., 17, 18}. Let '≃' be the equivalence relation on A × A, cartesian product of Awith itself, defined by (a, b) ≃ (c, d) if ad = bc. Then, the number of ordered pairs of the equivalence class of (3, 2) is _______________ .
The relation 'R' in N × N such that
(a, b) R (c, d) ⇔ a + d = b + c is ______________ .
If A = {a, b, c, d}, then a relation R = {(a, b), (b, a), (a, a)} on A is _____________ .
Let A = {1, 2, 3}. Then, the number of equivalence relations containing (1, 2) is ______.
Mark the correct alternative in the following question:
The relation S defined on the set R of all real number by the rule aSb if a b is _______________ .
If f (x) = `(4x + 3)/(6x - 4) , x ≠ 2/3`, show that fof (x) = x for all ` x ≠ 2/3` . Also, find the inverse of f.
Write the relation in the Roster form and hence find its domain and range:
R2 = `{("a", 1/"a") "/" 0 < "a" ≤ 5, "a" ∈ "N"}`
Let A = {0, 1, 2, 3} and define a relation R on A as follows: R = {(0, 0), (0, 1), (0, 3), (1, 0), (1, 1), (2, 2), (3, 0), (3, 3)}. Is R reflexive? symmetric? transitive?
Consider the set A = {1, 2, 3} and R be the smallest equivalence relation on A, then R = ______
Let Z be the set of integers and R be the relation defined in Z such that aRb if a – b is divisible by 3. Then R partitions the set Z into ______ pairwise disjoint subsets
The following defines a relation on N:
x is greater than y, x, y ∈ N
Determine which of the above relations are reflexive, symmetric and transitive.
Let the relation R be defined on the set A = {1, 2, 3, 4, 5} by R = {(a, b) : |a2 – b2| < 8. Then R is given by ______.
Which of the following is not an equivalence relation on I, the set of integers: x, y
Total number of equivalence relations defined in the set S = {a, b, c} is ____________.
Given set A = {1, 2, 3} and a relation R = {(1, 2), (2, 1)}, the relation R will be ____________.
An organization conducted a bike race under 2 different categories-boys and girls. Totally there were 250 participants. Among all of them finally, three from Category 1 and two from Category 2 were selected for the final race. Ravi forms two sets B and G with these participants for his college project. Let B = {b1,b2,b3} G={g1,g2} where B represents the set of boys selected and G the set of girls who were selected for the final race.
Ravi decides to explore these sets for various types of relations and functions.
- Ravi wishes to form all the relations possible from B to G. How many such relations are possible?
Find: `int (x + 1)/((x^2 + 1)x) dx`
The value of k for which the system of equations x + ky + 3z = 0, 4x + 3y + kz = 0, 2x + y + 2z = 0 has nontrivial solution is
On the set N of all natural numbers, define the relation R by a R b, if GCD of a and b is 2. Then, R is
Given a non-empty set X, define the relation R in P(X) as follows:
For A, B ∈ P(X), (4, B) ∈ R iff A ⊂ B. Prove that R is reflexive, transitive and not symmetric.