मराठी

If the Function F(X) = Kx3 − 9x2 + 9x + 3 is Monotonically Increasing in Every Interval, Then - Mathematics

Advertisements
Advertisements

प्रश्न

If the function f(x) = kx3 − 9x2 + 9x + 3 is monotonically increasing in every interval, then

पर्याय

  •  k < 3

  • k ≤ 3

  • k > 3

  •  k ≥ 3

MCQ

उत्तर

 k > 3

\[f\left( x \right) = k x^3 - 9 x^2 + 9x + 3\]

\[f'\left( x \right) = 3k x^2 - 18x + 9\]

\[ = 3 \left( k x^2 - 6x + 3 \right)\]

\[\text { Given:f(x) is monotonically increasing in every interval }.\]

\[ \Rightarrow f'\left( x \right) > 0\]

\[ \Rightarrow 3 \left( k x^2 - 6x + 3 \right) > 0\]

\[ \Rightarrow \left( k x^2 - 6x + 3 \right) > 0\]

\[ \Rightarrow k > 0 \text { and } \left( - 6 \right)^2 - 4\left( k \right)\left( 3 \right) < 0 \left[ \because a x^2 + bx + c > 0 \Rightarrow a > 0 \text { and Disc} < 0 \right]\]

\[ \Rightarrow k > 0 \text { and } \left( - 6 \right)^2 - 4\left( k \right)\left( 3 \right) < 0\]

\[ \Rightarrow k > 0 \text { and }36 - 12k < 0\]

\[ \Rightarrow k > 0 \text { and  }12k > 36\]

\[ \Rightarrow k > 0 \text { and } k > 3\]

\[ \Rightarrow k > 3\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 17: Increasing and Decreasing Functions - Exercise 17.4 [पृष्ठ ४१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 17 Increasing and Decreasing Functions
Exercise 17.4 | Q 16 | पृष्ठ ४१

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Find the interval in which the following function are increasing or decreasing f(x) = x4 − 4x ?


Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{x^4}{4} + \frac{2}{3} x^3 - \frac{5}{2} x^2 - 6x + 7\] ?


Find the interval in which the following function are increasing or decreasing  f(x) = x4 − 4x3 + 4x2 + 15 ?


Determine the values of x for which the function f(x) = x2 − 6x + 9 is increasing or decreasing. Also, find the coordinates of the point on the curve y = x2 − 6x + 9 where the normal is parallel to the line y = x + 5 ? 


Show that f(x) = cos2 x is a decreasing function on (0, π/2) ?


Show that the function f(x) = cot \[-\] l(sinx + cosx) is decreasing on \[\left( 0, \frac{\pi}{4} \right)\] and increasing on \[\left( 0, \frac{\pi}{4} \right)\] ?


Show that f(x) = (x − 1) ex + 1 is an increasing function for all x > 0 ?


State when a function f(x) is said to be increasing on an interval [a, b]. Test whether the function f(x) = x2 − 6x + 3 is increasing on the interval [4, 6] ?


Show that the function f given by f(x) = 10x is increasing for all x ?


Find the values of b for which the function f(x) = sin x − bx + c is a decreasing function on R ?


Let f defined on [0, 1] be twice differentiable such that | f (x) | ≤ 1 for all x ∈ [0, 1]. If f(0) = f(1), then show that | f'(x) | < 1 for all x ∈ [ 0, 1] ?


The interval of increase of the function f(x) = x − ex + tan (2π/7) is


The function f(x) = cot−1 x + x increases in the interval


The function \[f\left( x \right) = \log_e \left( x^3 + \sqrt{x^6 + 1} \right)\] is of the following types:


f(x) = 2x − tan−1 x − log \[\left\{ x + \sqrt{x^2 + 1} \right\}\] is monotonically increasing when

 


If the demand function is D = 50 - 3p - p2, find the elasticity of demand at (a) p = 5 (b) p = 2 ,  Interpret your result. 


Prove that the function f : N → N, defined by f(x) = x2 + x + 1 is one-one but not onto. Find the inverse of f: N → S, where S is range of f.


Find the intervals in which the function `f("x") = (4sin"x")/(2+cos"x") -"x";0≤"x"≤2pi` is strictly increasing or strictly decreasing. 


The edge of a cube is decreasing at the rate of`( 0.6"cm")/sec`. Find the rate at which its volume is decreasing, when the edge of the cube is 2 cm.


Test whether the following functions are increasing or decreasing : f(x) = `(1)/x`, x ∈ R , x ≠ 0.


Find the values of x for which the following functions are strictly decreasing:

f(x) = 2x3 – 3x2 – 12x + 6


Find the values of x for which the function f(x) = x3 – 12x2 – 144x + 13 (a) increasing (b) decreasing


show that f(x) = `3x + (1)/(3x)` is increasing in `(1/3, 1)` and decreasing in `(1/9, 1/3)`.


Find the value of x, such that f(x) is decreasing function.

f(x) = 2x3 – 15x2 – 84x – 7 


Let f(x) = x3 − 6x2 + 9𝑥 + 18, then f(x) is strictly decreasing in ______


Prove that function f(x) = `x - 1/x`, x ∈ R and x ≠ 0 is increasing function


The slope of tangent at any point (a, b) is also called as ______.


Show that the function f(x) = `(x - 2)/(x + 1)`, x ≠ – 1 is increasing


For every value of x, the function f(x) = `1/7^x` is ______ 


If f(x) = sin x – cos x, then interval in which function is decreasing in 0 ≤ x ≤ 2 π, is:


The function f(x) = x3 + 6x2 + (9 + 2k)x + 1 is strictly increasing for all x, if ____________.


The function `"f"("x") = "x"/"logx"` increases on the interval


The length of the longest interval, in which the function `3  "sin x" - 4  "sin"^3"x"` is increasing, is ____________.


Find the value of x for which the function f(x)= 2x3 – 9x2 + 12x + 2 is decreasing.

Given f(x) = 2x3 – 9x2 + 12x + 2

∴ f'(x) = `squarex^2 - square + square`

∴ f'(x) = `6(x - 1)(square)`

Now f'(x) < 0

∴ 6(x – 1)(x – 2) < 0

Since ab < 0 ⇔a < 0 and b < 0 or a > 0 and b < 0

Case 1: (x – 1) < 0 and (x – 2) < 0

∴ x < `square` and x > `square`

Which is contradiction

Case 2: x – 1 and x – 2 < 0

∴ x > `square` and x < `square`

1 < `square` < 2

f(x) is decreasing if and only if x ∈ `square`


Let f: [0, 2]→R be a twice differentiable function such that f"(x) > 0, for all x ∈( 0, 2). If `phi` (x) = f(x) + f(2 – x), then `phi` is ______.


Let f(x) be a function such that; f'(x) = log1/3(log3(sinx + a)) (where a ∈ R). If f(x) is decreasing for all real values of x then the exhaustive solution set of a is ______.


The interval in which the function f(x) = `(4x^2 + 1)/x` is decreasing is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×