English

Show that the given differential equation is homogeneous and solve them. (x2 + xy) dy = (x2 + y2) dx - Mathematics

Advertisements
Advertisements

Question

Show that the given differential equation is homogeneous and solve them.

(x2 + xy) dy = (x2 + y2) dx

Sum

Solution

Let `dy/dx = (x^2 + y^2)/(x^2 + xy) = f (xy)`       ..... (i)

Now, f `(lamda x, lambda y) = (lambda^2 (x^2 + y^2))/(lambda^2 (x^2 + xy)) = lambda^0` f (x, y)

`therefore` F(x,y) is an exponential function of degree zero.

Hence the given differential equation is a homogeneous differential equation.

Now y = vx

`dy/dx  = v + x  (dv)/dx`

Then, from equation (i)

V + x `(dv)/dx = (x^2 + v^2 x^2)/(x^2 + vx^2)`

`=> x  (dv)/dx = (1 + v^2)/(1 + v) - v`

`x  (dv)/dx = (1 + v - v - v^2)/(1 + v)`

`x  (dv)/dx = (dv)/dx = (1 - v)/(1 + v)`

`=> (1 + v)/(1 - v)  dv = dx/x`

On integrating,

`int (1 + v)/(1 - v)  dv   = int 1/x  dx`

`=>  int (-1 + 2/(1 - v)) dv  = int 1/x  dx`

⇒ - v - 2 log (1 - v) = log x + log C

⇒ - v = log Cx + 2 log (1 - v)

⇒ - v = log Cx + log (1 - v)2

Cx . (1 - v)2 = e-v

On substituting `y/x` in place of v,

`C. x ((x - y)^2)/x^2 = e^(-y/x)`

`=> (x - y)^2 = Cxe^(-y/x)`

shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Differential Equations - Exercise 9.5 [Page 406]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 9 Differential Equations
Exercise 9.5 | Q 1 | Page 406

RELATED QUESTIONS

Solve the differential equation (x2 + y2)dx- 2xydy = 0


Solve the differential equation :

`y+x dy/dx=x−y dy/dx`


 

Show that the differential  equation `2xydy/dx=x^2+3y^2`  is homogeneous and solve it.

 

Show that the given differential equation is homogeneous and solve them.

`y' = (x + y)/x`


Show that the given differential equation is homogeneous and solve them.

`x^2 dy/dx = x^2 - 2y^2 + xy`


Show that the given differential equation is homogeneous and solve them.

`x  dy - y  dx =  sqrt(x^2 + y^2)   dx`


Show that the given differential equation is homogeneous and solve them.

`(1+e^(x/y))dx + e^(x/y) (1 - x/y)dy = 0`


Which of the following is a homogeneous differential equation?


Prove that x2 – y2 = c(x2 + y2)2 is the general solution of the differential equation (x3 – 3xy2)dx = (y3 – 3x2y)dy, where C is parameter


\[x \cos\left( \frac{y}{x} \right) \cdot \left( y dx + x dy \right) = y \sin\left( \frac{y}{x} \right) \cdot \left( x dy - y dx \right)\]

(2x2 y + y3) dx + (xy2 − 3x3) dy = 0


\[y dx + \left\{ x \log\left( \frac{y}{x} \right) \right\} dy - 2x dy = 0\]

Solve the following initial value problem:
 (x2 + y2) dx = 2xy dy, y (1) = 0


Solve the following initial value problem:
(xy − y2) dx − x2 dy = 0, y(1) = 1


Solve the following initial value problem:
(y4 − 2x3 y) dx + (x4 − 2xy3) dy = 0, y (1) = 1


Solve the following initial value problem:
x (x2 + 3y2) dx + y (y2 + 3x2) dy = 0, y (1) = 1


Solve the following initial value problem:
\[\left\{ x \sin^2 \left( \frac{y}{x} \right) - y \right\}dx + x dy = 0, y\left( 1 \right) = \frac{\pi}{4}\]


Solve the following initial value problem:
\[x\frac{dy}{dx} - y + x \sin\left( \frac{y}{x} \right) = 0, y\left( 2 \right) = x\]


Solve the differential equation:  ` (dy)/(dx) = (x + y )/ (x - y )`


Solve the differential equation: x dy - y dx = `sqrt(x^2 + y^2)dx,` given that y = 0 when x = 1.


Solve the following differential equation:

`(1 + 2"e"^("x"/"y")) + 2"e"^("x"/"y")(1 - "x"/"y") "dy"/"dx" = 0`


Solve the following differential equation:

y2 dx + (xy + x2)dy = 0


Solve the following differential equation:

`x * dy/dx - y + x * sin(y/x) = 0`


Solve the following differential equation:

`"y"^2 - "x"^2 "dy"/"dx" = "xy""dy"/"dx"`


Solve the following differential equation:

`"x"^2 "dy"/"dx" = "x"^2 + "xy" + "y"^2`


Solve the following differential equation:

(x2 – y2)dx + 2xy dy = 0


Which of the following is not a homogeneous function of x and y.


Solcve: `x ("d"y)/("d"x) = y(log y – log x + 1)`


If a curve y = f(x), passing through the point (1, 2), is the solution of the differential equation, 2x2dy = (2xy + y2)dx, then `f(1/2)` is equal to ______.


The differential equation y' = `y/(x + sqrt(xy))` has general solution given by:

(where C is a constant of integration)


Read the following passage:

An equation involving derivatives of the dependent variable with respect to the independent variables is called a differential equation. A differential equation of the form `dy/dx` = F(x, y) is said to be homogeneous if F(x, y) is a homogeneous function of degree zero, whereas a function F(x, y) is a homogeneous function of degree n if F(λx, λy) = λn F(x, y).

To solve a homogeneous differential equation of the type `dy/dx` = F(x, y) = `g(y/x)`, we make the substitution y = vx and then separate the variables.

Based on the above, answer the following questions:

  1. Show that (x2 – y2) dx + 2xy dy = 0 is a differential equation of the type `dy/dx = g(y/x)`. (2)
  2. Solve the above equation to find its general solution. (2)

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×