मराठी

Dddydx+yxlogx=1x is an equation of the type ______. - Mathematics

Advertisements
Advertisements

प्रश्न

`("d"y)/("d"x) + y/(xlogx) = 1/x` is an equation of the type ______.

रिकाम्या जागा भरा

उत्तर

`("d"y)/("d"x) + y/(xlogx) = 1/x` is an equation of the type `("d"y)/("d"x) + "P"y` = Q.

Explanation:

We have `("d"y)/("d"x) + y/(xlogx) = 1/x`

The equation is of the type `("d"y)/("d"x) + "P"y` = Q.

Hence it is linear differential equation.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Differential Equations - Exercise [पृष्ठ २०२]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 9 Differential Equations
Exercise | Q 76.(iv) | पृष्ठ २०२

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Solve the following differential equation: `(x^2-1)dy/dx+2xy=2/(x^2-1)`


Solve the differential equation `sin^(-1) (dy/dx) = x + y`


\[\frac{dy}{dx} + 2y = 6 e^x\]

\[\frac{dy}{dx} + y = e^{- 2x}\]

\[x\frac{dy}{dx} = x + y\]

\[\frac{dy}{dx} + 2y = 4x\]

\[\frac{dy}{dx} + \frac{4x}{x^2 + 1}y + \frac{1}{\left( x^2 + 1 \right)^2} = 0\]

\[\frac{dy}{dx} + \frac{y}{x} = x^3\]

\[\frac{dy}{dx} + y = \sin x\]

\[\frac{dy}{dx}\] + y tan x = cos x


Find the equation of the curve passing through the point (0, 2) given that the sum of the coordinates of any point on the curve exceeds the magnitude of the slope of the tangent to the curve at that point by 5.


The slope of the tangent to the curve at any point is the reciprocal of twice the ordinate at that point. The curve passes through the point (4, 3). Determine its equation.


Experiments show that radium disintegrates at a rate proportional to the amount of radium present at the moment. Its half-life is 1590 years. What percentage will disappear in one year?


Solve the differential equation: (x + 1) dy – 2xy dx = 0


Integrating factor of the differential equation of the form `("d"x)/("d"y) + "P"_1x = "Q"_1` is given by `"e"^(int P_1dy)`.


Solution of the differential equation of the type `("d"x)/("d"y) + "p"_1x = "Q"_1` is given by x.I.F. = `("I"."F") xx "Q"_1"d"y`.


Correct substitution for the solution of the differential equation of the type `("d"x)/("d"y) = "g"(x, y)` where g(x, y) is a homogeneous function of the degree zero is x = vy.


Polio drops are delivered to 50 K children in a district. The rate at which polio drops are given is directly proportional to the number of children who have not been administered the drops. By the end of 2nd week half the children have been given the polio drops. How many will have been given the drops by the end of 3rd week can be estimated using the solution to the differential equation `"dy"/"dx" = "k"(50 - "y")` where x denotes the number of weeks and y the number of children who have been given the drops.

The solution of the differential equation `"dy"/"dx" = "k"(50 - "y")` is given by ______.


If `x (dy)/(dx) = y(log y - log x + 1)`, then the solution of the dx equation is


If y = y(x) is the solution of the differential equation `(1 + e^(2x))(dy)/(dx) + 2(1 + y^2)e^x` = 0 and y(0) = 0, then `6(y^'(0) + (y(log_esqrt(3))))^2` is equal to ______.


The population P = P(t) at time 't' of a certain species follows the differential equation `("dp")/("dt")` = 0.5P – 450. If P(0) = 850, then the time at which population becomes zero is ______.


Let y = y(x) be the solution of the differential equation `e^xsqrt(1 - y^2)dx + (y/x)dy` = 0, y(1) = –1. Then, the value of (y(3))2 is equal to ______.


Let y = y(x) be the solution of the differential equation, `(x^2 + 1)^2 ("dy")/("d"x) + 2x(x^2 + 1)"y"` = 1, such that y(0) = 0. If `sqrt("ay")(1) = π/32` then the value of  'a' is ______.


The solution of the differential equation `(1 + y^2) + (x - e^(tan^-1y)) (dy)/(dx)` = 0, is ______.


Solve the differential equation: 

`dy/dx` = cosec y


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×