मराठी

Solve the Differential Equation `Sin^1 (Dy/Dx) = X + Y` - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the differential equation `sin^(-1) (dy/dx) = x + y`

उत्तर

Put x + y = t

`1 + dy/dx = dt/dx`

`dy/dx = dt/dx - 1`

Now, `dy/dx = sin (x + y)`

`dt/dx - 1 = sin t`

`dt/dx = 1 +  sin t`

`int dt/(1+ sint) =  int dx`

`int (1 -sint)/(1-sin^2 t)dt = x + c`

`int  (1- sint)/cos^2t dt = x + c`

`int sec^2 t dt  - int tant sec t dt =  x + c`

`tan t - sect  =  x + c`

`tan(x + y) -  sec(x + y) = x + c`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2014-2015 (March)

APPEARS IN

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Solve the following differential equation: `(x^2-1)dy/dx+2xy=2/(x^2-1)`


Find the integrating factor for the following differential equation:`x logx dy/dx+y=2log x`


Solve `sin x dy/dx - y = sin x.tan  x/2`


\[\frac{dy}{dx} + 2y = e^{3x}\]

\[\frac{dy}{dx} + 2y = 6 e^x\]

\[\frac{dy}{dx} + \frac{4x}{x^2 + 1}y + \frac{1}{\left( x^2 + 1 \right)^2} = 0\]

\[\frac{dy}{dx} + y = \sin x\]

\[\left( 1 + x^2 \right)\frac{dy}{dx} + y = \tan^{- 1} x\]

\[\frac{dy}{dx}\] + y tan x = cos x


The slope of the tangent to the curve at any point is the reciprocal of twice the ordinate at that point. The curve passes through the point (4, 3). Determine its equation.


Solve the differential equation: (x + 1) dy – 2xy dx = 0


Solve the differential equation : `"x"(d"y")/(d"x") + "y" - "x" + "xy"cot"x" = 0; "x" != 0.`


`("e"^(-2sqrt(x))/sqrt(x) - y/sqrt(x))("d"x)/("d"y) = 1(x ≠ 0)` when written in the form `"dy"/"dx" + "P"y` = Q, then P = ______.


Correct substitution for the solution of the differential equation of the type `("d"y)/("d"x) = "f"(x, y)`, where f(x, y) is a homogeneous function of zero degree is y = vx.


Correct substitution for the solution of the differential equation of the type `("d"x)/("d"y) = "g"(x, y)` where g(x, y) is a homogeneous function of the degree zero is x = vy.


If ex + ey = ex+y, then `"dy"/"dx"` is:


The solution of the differential equation `(dx)/(dy) + Px = Q` where P and Q are constants or functions of y, is given by


The solution of the differential equation `(dy)/(dx) = 1 + x + y + xy` when y = 0 at x = – 1 is


`int cos(log x)  dx = F(x) + C` where C is arbitrary constant. Here F(x) =


If `x (dy)/(dx) = y(log y - log x + 1)`, then the solution of the dx equation is


Form the differential equation of the family of parabolas having vertex at origin and axis along positive y-axis.


If y = y(x) is the solution of the differential equation `(1 + e^(2x))(dy)/(dx) + 2(1 + y^2)e^x` = 0 and y(0) = 0, then `6(y^'(0) + (y(log_esqrt(3))))^2` is equal to ______.


Let y = y(x) be the solution of the differential equation, `(2 + sinxdy)/(y + 1) (dy)/(dx)` = –cosx. If y > 0, y(0) = 1. If y(π) = a, and `(dy)/(dx)` at x = π is b, then the ordered pair (a, b) is equal to ______.


If y = f(x), f'(0) = f(0) = 1 and if y = f(x) satisfies `(d^2y)/(dx^2) + (dy)/(dx)` = x, then the value of [f(1)] is ______ (where [.] denotes greatest integer function)


Solve the differential equation: 

`dy/dx` = cosec y


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×