Advertisements
Advertisements
Question
Solve the differential equation `sin^(-1) (dy/dx) = x + y`
Solution
Put x + y = t
`1 + dy/dx = dt/dx`
`dy/dx = dt/dx - 1`
Now, `dy/dx = sin (x + y)`
`dt/dx - 1 = sin t`
`dt/dx = 1 + sin t`
`int dt/(1+ sint) = int dx`
`int (1 -sint)/(1-sin^2 t)dt = x + c`
`int (1- sint)/cos^2t dt = x + c`
`int sec^2 t dt - int tant sec t dt = x + c`
`tan t - sect = x + c`
`tan(x + y) - sec(x + y) = x + c`
APPEARS IN
RELATED QUESTIONS
Solve the following differential equation: `(x^2-1)dy/dx+2xy=2/(x^2-1)`
Find the integrating factor for the following differential equation:`x logx dy/dx+y=2log x`
Find the integrating factor of the differential equation.
`((e^(-2^sqrtx))/sqrtx-y/sqrtx)dy/dx=1`
Solve `sin x dy/dx - y = sin x.tan x/2`
\[\frac{dy}{dx}\] + y tan x = cos x
The slope of the tangent to the curve at any point is the reciprocal of twice the ordinate at that point. The curve passes through the point (4, 3). Determine its equation.
`"dy"/"dx" + y` = 5 is a differential equation of the type `"dy"/"dx" + "P"y` = Q but it can be solved using variable separable method also.
`("d"y)/("d"x) + y/(xlogx) = 1/x` is an equation of the type ______.
Polio drops are delivered to 50 K children in a district. The rate at which polio drops are given is directly proportional to the number of children who have not been administered the drops. By the end of 2nd week half the children have been given the polio drops. How many will have been given the drops by the end of 3rd week can be estimated using the solution to the differential equation `"dy"/"dx" = "k"(50 - "y")` where x denotes the number of weeks and y the number of children who have been given the drops.
Which of the following solutions may be used to find the number of children who have been given the polio drops?
The solution of the differential equation `(dx)/(dy) + Px = Q` where P and Q are constants or functions of y, is given by
If `x (dy)/(dx) = y(log y - log x + 1)`, then the solution of the dx equation is
Solve the following differential equation: (y – sin2x)dx + tanx dy = 0
Let y = y(x) be the solution of the differential equation `(dy)/(dx) + (sqrt(2)y)/(2cos^4x - cos2x) = xe^(tan^-1(sqrt(2)cost2x)), 0 < x < π/2` with `y(π/4) = π^2/32`. If `y(π/3) = π^2/18e^(-tan^-1(α))`, then the value of 3α2 is equal to ______.
If y = y(x) is the solution of the differential equation `(1 + e^(2x))(dy)/(dx) + 2(1 + y^2)e^x` = 0 and y(0) = 0, then `6(y^'(0) + (y(log_esqrt(3))))^2` is equal to ______.
Let y = y(x) be the solution of the differential equation `e^xsqrt(1 - y^2)dx + (y/x)dy` = 0, y(1) = –1. Then, the value of (y(3))2 is equal to ______.
Let y = y(x) be the solution of the differential equation, `(x^2 + 1)^2 ("dy")/("d"x) + 2x(x^2 + 1)"y"` = 1, such that y(0) = 0. If `sqrt("ay")(1) = π/32` then the value of 'a' is ______.