Advertisements
Advertisements
Question
Solve the following differential equation: (y – sin2x)dx + tanx dy = 0
Solution
Given differential equation is (y – sin2x)dx + tanx dy = 0
(y – sin2x)dx = –tanx dy
`(dy)/(dx) = (y - sin^2x)/(-tanx)`
`(dy)/(dx) = (sin^2x - y)/tanx`
`(dy)/(dx) = sin^2x/tanx - y/tanx`
`(dy)/(dx) = sinxcosx – ycotx`
`(dy)/(dx) + ycotx = sinxcosx`
Which is a linear differential equation of the form `(dy)/(dx) + Py = Q`
Where P = cot x
Q = sin x cos x
Here, If = `e^(intPdx) = e^(int cot xdx)`
= `e^(log|sinx|)` = sinx
∴ Solution is given by y.If = `int Q.If dx + C_1`
y.sinx = `int (sinx cosx sinx)dx + C_1`
y.sinx = `int sin^2x cosx dx + C_1`
y.sinx = I + C1 ...(i)
Where I = `int sin^2x cosdx`
Let sinx = t
⇒ cosxdx = dt
∴ I = `int t^2dt = t^3/3 + C_2`
or I = `sin^3x/3 + C_2`
From equation (i), we have
y.sin = `sin^3x/3 + C_2 + C_1`
or y.sinx = `sin^3x/3 + C` ...(Where C = C1 + C2)
APPEARS IN
RELATED QUESTIONS
Solve the following differential equation: `(x^2-1)dy/dx+2xy=2/(x^2-1)`
Solve `sin x dy/dx - y = sin x.tan x/2`
\[\frac{dy}{dx}\] = y tan x − 2 sin x
\[\frac{dy}{dx}\] + y tan x = cos x
Find the equation of the curve passing through the point (0, 2) given that the sum of the coordinates of any point on the curve exceeds the magnitude of the slope of the tangent to the curve at that point by 5.
A wet porous substance in the open air loses its moisture at a rate proportional to the moisture content. If a sheet hung in the wind loses half of its moisture during the first hour, when will it have lost 95% moisture, weather conditions remaining the same.
Solve the differential equation: (x + 1) dy – 2xy dx = 0
Solve the differential equation : `"x"(d"y")/(d"x") + "y" - "x" + "xy"cot"x" = 0; "x" != 0.`
`("e"^(-2sqrt(x))/sqrt(x) - y/sqrt(x))("d"x)/("d"y) = 1(x ≠ 0)` when written in the form `"dy"/"dx" + "P"y` = Q, then P = ______.
Solution of the differential equation of the type `("d"x)/("d"y) + "p"_1x = "Q"_1` is given by x.I.F. = `("I"."F") xx "Q"_1"d"y`.
Correct substitution for the solution of the differential equation of the type `("d"x)/("d"y) = "g"(x, y)` where g(x, y) is a homogeneous function of the degree zero is x = vy.
If ex + ey = ex+y, then `"dy"/"dx"` is:
Polio drops are delivered to 50 K children in a district. The rate at which polio drops are given is directly proportional to the number of children who have not been administered the drops. By the end of 2nd week half the children have been given the polio drops. How many will have been given the drops by the end of 3rd week can be estimated using the solution to the differential equation `"dy"/"dx" = "k"(50 - "y")` where x denotes the number of weeks and y the number of children who have been given the drops.
Which of the following solutions may be used to find the number of children who have been given the polio drops?
The solution of the differential equation `(dx)/(dy) + Px = Q` where P and Q are constants or functions of y, is given by
The solution of the differential equation `(dy)/(dx) = 1 + x + y + xy` when y = 0 at x = – 1 is
`int cos(log x) dx = F(x) + C` where C is arbitrary constant. Here F(x) =
Solve the differential equation: xdy – ydx = `sqrt(x^2 + y^2)dx`
If y = y(x) is the solution of the differential equation `(1 + e^(2x))(dy)/(dx) + 2(1 + y^2)e^x` = 0 and y(0) = 0, then `6(y^'(0) + (y(log_esqrt(3))))^2` is equal to ______.
Let y = y(x) be the solution of the differential equation, `(x^2 + 1)^2 ("dy")/("d"x) + 2x(x^2 + 1)"y"` = 1, such that y(0) = 0. If `sqrt("ay")(1) = π/32` then the value of 'a' is ______.
If y = f(x), f'(0) = f(0) = 1 and if y = f(x) satisfies `(d^2y)/(dx^2) + (dy)/(dx)` = x, then the value of [f(1)] is ______ (where [.] denotes greatest integer function)
The solution of the differential equation `(1 + y^2) + (x - e^(tan^-1y)) (dy)/(dx)` = 0, is ______.