Advertisements
Advertisements
Question
Find the equation of the curve passing through the point (0, 2) given that the sum of the coordinates of any point on the curve exceeds the magnitude of the slope of the tangent to the curve at that point by 5.
Solution
According to the question,
\[\text{ Comparing with }\frac{dy}{dx} + Py = Q, \text{ we get }\]
\[P = - 1 \]
\[Q = x - 5\]
Now,
\[\text{ I . F . }= e^{- \int dx} = e^{- x} \]
So, the solution is given by
\[y \times I . F . = \int Q \times I . F . dx + C\]
\[ \Rightarrow y e^{- x} = \int\left( x - 5 \right) e^{- x} dx + C\]

\[ \Rightarrow y e^{- x} = x\int e^{- x} dx - \int\left[ \frac{d}{dx}\left( x \right)\int e^{- x} dx \right]dx + 5 e^{- x} + C\]
\[ \Rightarrow y e^{- x} = - x e^{- x} + \int e^{- x} dx + 5 e^{- x} + C\]
\[ \Rightarrow y e^{- x} = - x e^{- x} - e^{- x} + 5 e^{- x} + C\]
\[ \Rightarrow y e^{- x} = - x e^{- x} + 4 e^{- x} + C\]
Since the curve passes throught the point 0, 2, it satisfies the equation of the curve.
\[2 e^0 = - 0 e^0 + 4 e^0 + C\]
\[ \Rightarrow C = - 2\]
Putting the value of C in the equation of the curve, we get
\[y e^{- x} = - x e^{- x} + 4 e^{- x} - 2\]
\[ \Rightarrow y = - x + 4 - 2 e^x \]
\[ \Rightarrow y = 4 - x - 2 e^x\]
APPEARS IN
RELATED QUESTIONS
Solve the differential equation ` (1 + x2) dy/dx+y=e^(tan^(−1))x.`
\[\frac{dy}{dx}\] + y cot x = x2 cot x + 2x
A wet porous substance in the open air loses its moisture at a rate proportional to the moisture content. If a sheet hung in the wind loses half of its moisture during the first hour, when will it have lost 95% moisture, weather conditions remaining the same.
Solve the differential equation : `"x"(d"y")/(d"x") + "y" - "x" + "xy"cot"x" = 0; "x" != 0.`
Solve the differential equation `"dy"/"dx" + y/x` = x2.
`("e"^(-2sqrt(x))/sqrt(x) - y/sqrt(x))("d"x)/("d"y) = 1(x ≠ 0)` when written in the form `"dy"/"dx" + "P"y` = Q, then P = ______.
`("d"y)/("d"x) + y/(xlogx) = 1/x` is an equation of the type ______.
If ex + ey = ex+y, then `"dy"/"dx"` is:
Polio drops are delivered to 50 K children in a district. The rate at which polio drops are given is directly proportional to the number of children who have not been administered the drops. By the end of 2nd week half the children have been given the polio drops. How many will have been given the drops by the end of 3rd week can be estimated using the solution to the differential equation `"dy"/"dx" = "k"(50 - "y")` where x denotes the number of weeks and y the number of children who have been given the drops.
The solution of the differential equation `"dy"/"dx" = "k"(50 - "y")` is given by ______.
Solve the differential equation:
`"dy"/"dx" = 2^(-"y")`
If α, β are different values of x satisfying the equation a cos x + b sinα x = c, where a, b and c are constants, then `tan ((alpha + beta)/2)` is
The solution of the differential equation `(dy)/(dx) = 1 + x + y + xy` when y = 0 at x = – 1 is
If `x (dy)/(dx) = y(log y - log x + 1)`, then the solution of the dx equation is
Form the differential equation of the family of parabolas having vertex at origin and axis along positive y-axis.
Solve the differential equation: xdy – ydx = `sqrt(x^2 + y^2)dx`
Let y = y(x) be the solution of the differential equation `(dy)/(dx) + (sqrt(2)y)/(2cos^4x - cos2x) = xe^(tan^-1(sqrt(2)cost2x)), 0 < x < π/2` with `y(π/4) = π^2/32`. If `y(π/3) = π^2/18e^(-tan^-1(α))`, then the value of 3α2 is equal to ______.
If y = y(x) is the solution of the differential equation `(1 + e^(2x))(dy)/(dx) + 2(1 + y^2)e^x` = 0 and y(0) = 0, then `6(y^'(0) + (y(log_esqrt(3))))^2` is equal to ______.
Let y = y(x) be the solution of the differential equation `xtan(y/x)dy = (ytan(y/x) - x)dx, -1 ≤ x ≤ 1, y(1/2) = π/6`. Then the area of the region bounded by the curves x = 0, x = `1/sqrt(2)` and y = y(x) in the upper half plane is ______.
Let y = y(x) be the solution of the differential equation `e^xsqrt(1 - y^2)dx + (y/x)dy` = 0, y(1) = –1. Then, the value of (y(3))2 is equal to ______.
If y = f(x), f'(0) = f(0) = 1 and if y = f(x) satisfies `(d^2y)/(dx^2) + (dy)/(dx)` = x, then the value of [f(1)] is ______ (where [.] denotes greatest integer function)
The solution of the differential equation `(1 + y^2) + (x - e^(tan^-1y)) (dy)/(dx)` = 0, is ______.
Solve the differential equation:
`dy/dx` = cosec y