English

Dddydx+yxlogx=1x is an equation of the type ______. - Mathematics

Advertisements
Advertisements

Question

`("d"y)/("d"x) + y/(xlogx) = 1/x` is an equation of the type ______.

Fill in the Blanks

Solution

`("d"y)/("d"x) + y/(xlogx) = 1/x` is an equation of the type `("d"y)/("d"x) + "P"y` = Q.

Explanation:

We have `("d"y)/("d"x) + y/(xlogx) = 1/x`

The equation is of the type `("d"y)/("d"x) + "P"y` = Q.

Hence it is linear differential equation.

shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Differential Equations - Exercise [Page 202]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 9 Differential Equations
Exercise | Q 76.(iv) | Page 202

RELATED QUESTIONS

Solve the following differential equation: `(x^2-1)dy/dx+2xy=2/(x^2-1)`


Find the integrating factor for the following differential equation:`x logx dy/dx+y=2log x`


\[\frac{dy}{dx} + y = e^{- 2x}\]

\[x\frac{dy}{dx} + y = x e^x\]

\[\frac{dy}{dx} + \frac{4x}{x^2 + 1}y + \frac{1}{\left( x^2 + 1 \right)^2} = 0\]

\[\frac{dy}{dx}\] = y tan x − 2 sin x


\[\frac{dy}{dx}\] + y tan x = cos x


\[\left( 1 + y^2 \right) + \left( x - e^{tan^{- 1} y} \right)\frac{dy}{dx} = 0\]

The decay rate of radium at any time  t is proportional to its mass at that time. Find the time when the mass will be halved of its initial mass.


Solve the differential equation: (1 + x2) dy + 2xy dx = cot x dx


`("e"^(-2sqrt(x))/sqrt(x) - y/sqrt(x))("d"x)/("d"y) = 1(x ≠ 0)` when written in the form `"dy"/"dx" + "P"y` = Q, then P = ______.


`"dy"/"dx" + y` = 5 is a differential equation of the type `"dy"/"dx" + "P"y` = Q but it can be solved using variable separable method also.


Integrating factor of the differential equation of the form `("d"x)/("d"y) + "P"_1x = "Q"_1` is given by `"e"^(int P_1dy)`.


Solution of the differential equation of the type `("d"x)/("d"y) + "p"_1x = "Q"_1` is given by x.I.F. = `("I"."F") xx "Q"_1"d"y`.


Correct substitution for the solution of the differential equation of the type `("d"y)/("d"x) = "f"(x, y)`, where f(x, y) is a homogeneous function of zero degree is y = vx.


If ex + ey = ex+y, then `"dy"/"dx"` is:


Polio drops are delivered to 50 K children in a district. The rate at which polio drops are given is directly proportional to the number of children who have not been administered the drops. By the end of 2nd week half the children have been given the polio drops. How many will have been given the drops by the end of 3rd week can be estimated using the solution to the differential equation `"dy"/"dx" = "k"(50 - "y")` where x denotes the number of weeks and y the number of children who have been given the drops.

Which of the following solutions may be used to find the number of children who have been given the polio drops?


The solution of the differential equation `(dx)/(dy) + Px = Q` where P and Q are constants or functions of y, is given by


The solution of the differential equation `(dy)/(dx) = 1 + x + y + xy` when y = 0 at x = – 1 is


Form the differential equation of the family of parabolas having vertex at origin and axis along positive y-axis.


Solve the following differential equation: (y – sin2x)dx + tanx dy = 0


Find the general solution of the differential equation: (x3 + y3)dy = x2ydx


The population P = P(t) at time 't' of a certain species follows the differential equation `("dp")/("dt")` = 0.5P – 450. If P(0) = 850, then the time at which population becomes zero is ______.


The solution of the differential equation `(1 + y^2) + (x - e^(tan^-1y)) (dy)/(dx)` = 0, is ______.


Solve the differential equation: 

`dy/dx` = cosec y


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×