Advertisements
Advertisements
Question
Solution of the differential equation of the type
Options
True
False
Solution
This statement is True.
Explanation:
Since particular solution of a differential equation has no arbitrary constant.
APPEARS IN
RELATED QUESTIONS
Solve the following differential equation:
Solve the differential equation
Solve
Find the equation of the curve passing through the point (0, 2) given that the sum of the coordinates of any point on the curve exceeds the magnitude of the slope of the tangent to the curve at that point by 5.
The decay rate of radium at any time t is proportional to its mass at that time. Find the time when the mass will be halved of its initial mass.
A wet porous substance in the open air loses its moisture at a rate proportional to the moisture content. If a sheet hung in the wind loses half of its moisture during the first hour, when will it have lost 95% moisture, weather conditions remaining the same.
Solve the differential equation: (1 + x2) dy + 2xy dx = cot x dx
Solve the differential equation :
If ex + ey = ex+y, then
Polio drops are delivered to 50 K children in a district. The rate at which polio drops are given is directly proportional to the number of children who have not been administered the drops. By the end of 2nd week half the children have been given the polio drops. How many will have been given the drops by the end of 3rd week can be estimated using the solution to the differential equation
The solution of the differential equation
Polio drops are delivered to 50 K children in a district. The rate at which polio drops are given is directly proportional to the number of children who have not been administered the drops. By the end of 2nd week half the children have been given the polio drops. How many will have been given the drops by the end of 3rd week can be estimated using the solution to the differential equation
Which of the following solutions may be used to find the number of children who have been given the polio drops?
If α, β are different values of x satisfying the equation a cos x + b sinα x = c, where a, b and c are constants, then
The solution of the differential equation
Form the differential equation of the family of parabolas having vertex at origin and axis along positive y-axis.
Solve the following differential equation: (y – sin2x)dx + tanx dy = 0
Let y = y(x) be the solution of the differential equation
The population P = P(t) at time 't' of a certain species follows the differential equation
Let y = y(x) be the solution of the differential equation,