English

A Wet Porous Substance in the Open Air Loses Its Moisture at a Rate Proportional to the Moisture Content. If a Sheet Hung in the Wind Loses Half of Its Moisture During the First Hour, - Mathematics

Advertisements
Advertisements

Question

A wet porous substance in the open air loses its moisture at a rate proportional to the moisture content. If a sheet hung in the wind loses half of its moisture during the first hour, when will it have lost 95% moisture, weather conditions remaining the same.

Sum

Solution

Let the original amount of moisture in the porous substance be N and the amount of moisture in the porous substance at any time t be P.

\[\text{ Given: }\frac{dP}{dt}\alpha P\]

\[ \Rightarrow \frac{dP}{dt} = - aP\]

\[ \Rightarrow \frac{dP}{P} = - a dt\]

\[ \Rightarrow \log \left| P \right| = - at + C . . . . . \left( 1 \right)\]

Now, P = N at t = 0

Putting P = N and t = 0 in (1), we get

\[\log \left| N \right| = C\]

\[\text{ Putting }C = \log \left| N \right|\text{ in }\left( 1 \right), \text{ we get }\]

\[\log \left| P \right| = - \text{ at }+ \log \left| N \right|\]

\[ \Rightarrow \log \left| \frac{P}{N} \right| = - \text{ at }. . . . . \left( 2 \right)\]

According to the question,

\[P = \frac{1}{2}N\text{ at }t = 1\]

\[\log \left| \frac{N}{2N} \right| = - a\]

\[ \Rightarrow a = \log \left| 2 \right|\]

\[\text{ Putting }a = \log \left| 2 \right|\text{ in }\left( 2 \right),\text{ we get }\]

\[\log \left| \frac{P}{N} \right| = - t \log\left| 2 \right|\]

To find the time when it will loss 95 % moisture, we have

\[P = \left( 1 - 95\%  \right)N = \frac{5}{100}N\]

\[ \therefore \log \left| \frac{5N}{100N} \right| = - t \log \left| 2 \right|\]

\[ \Rightarrow \log 20 = t \log 2\]

\[ \Rightarrow t = \frac{\log 20}{\log 2}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Revision Exercise [Page 148]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Revision Exercise | Q 79 | Page 148

RELATED QUESTIONS

Find the integrating factor for the following differential equation:`x logx dy/dx+y=2log x`


Find the integrating factor of the differential equation.

`((e^(-2^sqrtx))/sqrtx-y/sqrtx)dy/dx=1`


\[\frac{dy}{dx} + y = e^{- 2x}\]

\[\frac{dy}{dx} + 2y = 4x\]

\[x\frac{dy}{dx} - y = \left( x - 1 \right) e^x\]

\[\frac{dy}{dx} + \frac{y}{x} = x^3\]

\[\frac{dy}{dx} + y = \cos x\]

\[\frac{dy}{dx}\] + y cot x = x2 cot x + 2x


\[\left( 1 + y^2 \right) + \left( x - e^{tan^{- 1} y} \right)\frac{dy}{dx} = 0\]

The slope of the tangent to the curve at any point is the reciprocal of twice the ordinate at that point. The curve passes through the point (4, 3). Determine its equation.


Experiments show that radium disintegrates at a rate proportional to the amount of radium present at the moment. Its half-life is 1590 years. What percentage will disappear in one year?


Solve the following differential equation :

`"dy"/"dx" + "y" = cos"x" - sin"x"`


`"dy"/"dx" + y` = 5 is a differential equation of the type `"dy"/"dx" + "P"y` = Q but it can be solved using variable separable method also.


`("d"y)/("d"x) + y/(xlogx) = 1/x` is an equation of the type ______.


Integrating factor of the differential equation of the form `("d"x)/("d"y) + "P"_1x = "Q"_1` is given by `"e"^(int P_1dy)`.


Solution of the differential equation of the type `("d"x)/("d"y) + "p"_1x = "Q"_1` is given by x.I.F. = `("I"."F") xx "Q"_1"d"y`.


Correct substitution for the solution of the differential equation of the type `("d"y)/("d"x) = "f"(x, y)`, where f(x, y) is a homogeneous function of zero degree is y = vx.


Correct substitution for the solution of the differential equation of the type `("d"x)/("d"y) = "g"(x, y)` where g(x, y) is a homogeneous function of the degree zero is x = vy.


If ex + ey = ex+y, then `"dy"/"dx"` is:


Polio drops are delivered to 50 K children in a district. The rate at which polio drops are given is directly proportional to the number of children who have not been administered the drops. By the end of 2nd week half the children have been given the polio drops. How many will have been given the drops by the end of 3rd week can be estimated using the solution to the differential equation `"dy"/"dx" = "k"(50 - "y")` where x denotes the number of weeks and y the number of children who have been given the drops.

The solution of the differential equation `"dy"/"dx" = "k"(50 - "y")` is given by ______.


Solve the differential equation:

`"dy"/"dx" = 2^(-"y")`


The solution of the differential equation `(dx)/(dy) + Px = Q` where P and Q are constants or functions of y, is given by


The solution of the differential equation `(dy)/(dx) = 1 + x + y + xy` when y = 0 at x = – 1 is


`int cos(log x)  dx = F(x) + C` where C is arbitrary constant. Here F(x) =


Find the general solution of the differential equation: (x3 + y3)dy = x2ydx


Let y = y(x) be the solution of the differential equation `(dy)/(dx) + (sqrt(2)y)/(2cos^4x - cos2x) = xe^(tan^-1(sqrt(2)cost2x)), 0 < x < π/2` with `y(π/4) = π^2/32`. If `y(π/3) = π^2/18e^(-tan^-1(α))`, then the value of 3α2 is equal to ______.


The population P = P(t) at time 't' of a certain species follows the differential equation `("dp")/("dt")` = 0.5P – 450. If P(0) = 850, then the time at which population becomes zero is ______.


Let y = y(x) be the solution of the differential equation, `(2 + sinxdy)/(y + 1) (dy)/(dx)` = –cosx. If y > 0, y(0) = 1. If y(π) = a, and `(dy)/(dx)` at x = π is b, then the ordered pair (a, b) is equal to ______.


Let y = y(x) be the solution of the differential equation, `(x^2 + 1)^2 ("dy")/("d"x) + 2x(x^2 + 1)"y"` = 1, such that y(0) = 0. If `sqrt("ay")(1) = π/32` then the value of  'a' is ______.


The solution of the differential equation `(1 + y^2) + (x - e^(tan^-1y)) (dy)/(dx)` = 0, is ______.


Solve the differential equation: 

`dy/dx` = cosec y


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×