मराठी

Solve the following differential equation: (y – sin2x)dx + tanx dy = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following differential equation: (y – sin2x)dx + tanx dy = 0

बेरीज

उत्तर

Given differential equation is (y – sin2x)dx + tanx dy = 0

(y – sin2x)dx = –tanx dy

`(dy)/(dx) = (y - sin^2x)/(-tanx)`

`(dy)/(dx) = (sin^2x - y)/tanx`

`(dy)/(dx) = sin^2x/tanx - y/tanx`

`(dy)/(dx) = sinxcosx  –  ycotx`

`(dy)/(dx) + ycotx = sinxcosx`

Which is a linear differential equation of the form `(dy)/(dx) + Py = Q`

Where P = cot x

Q = sin x cos x

Here, If = `e^(intPdx) = e^(int cot xdx)`

= `e^(log|sinx|)` = sinx

∴ Solution is given by y.If = `int Q.If dx + C_1`

y.sinx = `int (sinx cosx sinx)dx + C_1`

y.sinx = `int sin^2x cosx dx + C_1`

y.sinx = I + C1 ...(i)

Where I = `int sin^2x cosdx`

Let sinx = t

⇒ cosxdx = dt

∴  I = `int t^2dt = t^3/3 + C_2`

or I = `sin^3x/3 + C_2`

From equation (i), we have

y.sin = `sin^3x/3 + C_2 + C_1`

or y.sinx = `sin^3x/3 + C`  ...(Where C = C1 + C2)

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2021-2022 (April) Term 2 - Delhi Set 1

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Find the integrating factor for the following differential equation:`x logx dy/dx+y=2log x`


Solve the differential equation ` (1 + x2) dy/dx+y=e^(tan^(−1))x.`


\[\frac{dy}{dx} + y = e^{- 2x}\]

\[x\frac{dy}{dx} + y = x e^x\]

\[\frac{dy}{dx} + \frac{4x}{x^2 + 1}y + \frac{1}{\left( x^2 + 1 \right)^2} = 0\]

\[x\frac{dy}{dx} - y = \left( x - 1 \right) e^x\]

\[\left( 1 + x^2 \right)\frac{dy}{dx} + y = \tan^{- 1} x\]

\[\frac{dy}{dx}\] + y cot x = x2 cot x + 2x


Find the equation of the curve passing through the point (0, 2) given that the sum of the coordinates of any point on the curve exceeds the magnitude of the slope of the tangent to the curve at that point by 5.


The slope of the tangent to the curve at any point is the reciprocal of twice the ordinate at that point. The curve passes through the point (4, 3). Determine its equation.


Solve the differential equation: (x + 1) dy – 2xy dx = 0


Solve the differential equation: (1 + x2) dy + 2xy dx = cot x dx


Solve the following differential equation :

`"dy"/"dx" + "y" = cos"x" - sin"x"`


`"dy"/"dx" + y` = 5 is a differential equation of the type `"dy"/"dx" + "P"y` = Q but it can be solved using variable separable method also.


`("d"y)/("d"x) + y/(xlogx) = 1/x` is an equation of the type ______.


Solution of the differential equation of the type `("d"x)/("d"y) + "p"_1x = "Q"_1` is given by x.I.F. = `("I"."F") xx "Q"_1"d"y`.


Correct substitution for the solution of the differential equation of the type `("d"x)/("d"y) = "g"(x, y)` where g(x, y) is a homogeneous function of the degree zero is x = vy.


If ex + ey = ex+y, then `"dy"/"dx"` is:


Polio drops are delivered to 50 K children in a district. The rate at which polio drops are given is directly proportional to the number of children who have not been administered the drops. By the end of 2nd week half the children have been given the polio drops. How many will have been given the drops by the end of 3rd week can be estimated using the solution to the differential equation `"dy"/"dx" = "k"(50 - "y")` where x denotes the number of weeks and y the number of children who have been given the drops.

The solution of the differential equation `"dy"/"dx" = "k"(50 - "y")` is given by ______.


Polio drops are delivered to 50 K children in a district. The rate at which polio drops are given is directly proportional to the number of children who have not been administered the drops. By the end of 2nd week half the children have been given the polio drops. How many will have been given the drops by the end of 3rd week can be estimated using the solution to the differential equation `"dy"/"dx" = "k"(50 - "y")` where x denotes the number of weeks and y the number of children who have been given the drops.

Which of the following solutions may be used to find the number of children who have been given the polio drops?


Solve the differential equation:

`"dy"/"dx" = 2^(-"y")`


If `x (dy)/(dx) = y(log y - log x + 1)`, then the solution of the dx equation is


Solve the differential equation: xdy – ydx = `sqrt(x^2 + y^2)dx`


If y = y(x) is the solution of the differential equation `(1 + e^(2x))(dy)/(dx) + 2(1 + y^2)e^x` = 0 and y(0) = 0, then `6(y^'(0) + (y(log_esqrt(3))))^2` is equal to ______.


Let y = y(x) be the solution of the differential equation `xtan(y/x)dy = (ytan(y/x) - x)dx, -1 ≤ x ≤ 1, y(1/2) = π/6`. Then the area of the region bounded by the curves x = 0, x = `1/sqrt(2)` and y = y(x) in the upper half plane is ______.


Let y = y(x) be the solution of the differential equation `e^xsqrt(1 - y^2)dx + (y/x)dy` = 0, y(1) = –1. Then, the value of (y(3))2 is equal to ______.


Solve the differential equation: 

`dy/dx` = cosec y


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×