मराठी

The slope of the tangent to the curve at any point is the reciprocal of twice the ordinate at that point. The curve passes through the point (4, 3). Determine its equation. - Mathematics

Advertisements
Advertisements

प्रश्न

The slope of the tangent to the curve at any point is the reciprocal of twice the ordinate at that point. The curve passes through the point (4, 3). Determine its equation.

बेरीज

उत्तर

According to the question,
\[\frac{dy}{dx} = \frac{1}{2y}\]
\[ \Rightarrow 2y dy = dx\]
Integrating both sides, we get
\[2\int y dy = \int dx\]
\[ \Rightarrow y^2 = x + C\]
Since the curve passes throught the point (4, 3), it satisfies the equation of the curve.
\[9 = 4 + C\]
\[ \Rightarrow C = 5\]
Putting the value of C in the equation of the curve, we get
\[ y^2 = x + 5\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Revision Exercise [पृष्ठ १४८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Revision Exercise | Q 76 | पृष्ठ १४८

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Find the integrating factor for the following differential equation:`x logx dy/dx+y=2log x`


Find the integrating factor of the differential equation.

`((e^(-2^sqrtx))/sqrtx-y/sqrtx)dy/dx=1`


Solve the differential equation ` (1 + x2) dy/dx+y=e^(tan^(−1))x.`


Solve the differential equation `sin^(-1) (dy/dx) = x + y`


\[4\frac{dy}{dx} + 8y = 5 e^{- 3x}\]

\[\frac{dy}{dx} + 2y = 6 e^x\]

\[\frac{dy}{dx} + 2y = 4x\]

\[x\frac{dy}{dx} + y = x e^x\]

\[x\frac{dy}{dx} + y = x \log x\]

\[x\frac{dy}{dx} - y = \left( x - 1 \right) e^x\]

\[\frac{dy}{dx} + y = \sin x\]

\[\frac{dy}{dx} + 2y = \sin x\]

\[\left( 1 + y^2 \right) + \left( x - e^{tan^{- 1} y} \right)\frac{dy}{dx} = 0\]

Find the equation of the curve passing through the point (0, 2) given that the sum of the coordinates of any point on the curve exceeds the magnitude of the slope of the tangent to the curve at that point by 5.


The decay rate of radium at any time  t is proportional to its mass at that time. Find the time when the mass will be halved of its initial mass.


Experiments show that radium disintegrates at a rate proportional to the amount of radium present at the moment. Its half-life is 1590 years. What percentage will disappear in one year?


Solve the differential equation: (x + 1) dy – 2xy dx = 0


Solve the differential equation: (1 + x2) dy + 2xy dx = cot x dx


Solve the differential equation : `"x"(d"y")/(d"x") + "y" - "x" + "xy"cot"x" = 0; "x" != 0.`


Solve the following differential equation :

`"dy"/"dx" + "y" = cos"x" - sin"x"`


`("e"^(-2sqrt(x))/sqrt(x) - y/sqrt(x))("d"x)/("d"y) = 1(x ≠ 0)` when written in the form `"dy"/"dx" + "P"y` = Q, then P = ______.


`("d"y)/("d"x) + y/(xlogx) = 1/x` is an equation of the type ______.


Solution of the differential equation of the type `("d"x)/("d"y) + "p"_1x = "Q"_1` is given by x.I.F. = `("I"."F") xx "Q"_1"d"y`.


Solve the differential equation:

`"dy"/"dx" = 2^(-"y")`


If α, β are different values of x satisfying the equation a cos x + b sinα x = c, where a, b and c are constants, then `tan ((alpha + beta)/2)` is


`int cos(log x)  dx = F(x) + C` where C is arbitrary constant. Here F(x) =


If `x (dy)/(dx) = y(log y - log x + 1)`, then the solution of the dx equation is


Form the differential equation of the family of parabolas having vertex at origin and axis along positive y-axis.


Solve the differential equation: xdy – ydx = `sqrt(x^2 + y^2)dx`


Solve the following differential equation: (y – sin2x)dx + tanx dy = 0


Let y = y(x) be the solution of the differential equation `(dy)/(dx) + (sqrt(2)y)/(2cos^4x - cos2x) = xe^(tan^-1(sqrt(2)cost2x)), 0 < x < π/2` with `y(π/4) = π^2/32`. If `y(π/3) = π^2/18e^(-tan^-1(α))`, then the value of 3α2 is equal to ______.


Let y = y(x) be the solution of the differential equation `xtan(y/x)dy = (ytan(y/x) - x)dx, -1 ≤ x ≤ 1, y(1/2) = π/6`. Then the area of the region bounded by the curves x = 0, x = `1/sqrt(2)` and y = y(x) in the upper half plane is ______.


Let y = y(x) be the solution of the differential equation, `(2 + sinxdy)/(y + 1) (dy)/(dx)` = –cosx. If y > 0, y(0) = 1. If y(π) = a, and `(dy)/(dx)` at x = π is b, then the ordered pair (a, b) is equal to ______.


Let y = y(x) be the solution of the differential equation, `(x^2 + 1)^2 ("dy")/("d"x) + 2x(x^2 + 1)"y"` = 1, such that y(0) = 0. If `sqrt("ay")(1) = π/32` then the value of  'a' is ______.


The solution of the differential equation `(1 + y^2) + (x - e^(tan^-1y)) (dy)/(dx)` = 0, is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×