Advertisements
Advertisements
प्रश्न
Solve the differential equation `sin^(-1) (dy/dx) = x + y`
उत्तर
Put x + y = t
`1 + dy/dx = dt/dx`
`dy/dx = dt/dx - 1`
Now, `dy/dx = sin (x + y)`
`dt/dx - 1 = sin t`
`dt/dx = 1 + sin t`
`int dt/(1+ sint) = int dx`
`int (1 -sint)/(1-sin^2 t)dt = x + c`
`int (1- sint)/cos^2t dt = x + c`
`int sec^2 t dt - int tant sec t dt = x + c`
`tan t - sect = x + c`
`tan(x + y) - sec(x + y) = x + c`
APPEARS IN
संबंधित प्रश्न
Solve the following differential equation: `(x^2-1)dy/dx+2xy=2/(x^2-1)`
Find the integrating factor for the following differential equation:`x logx dy/dx+y=2log x`
\[\frac{dy}{dx}\] + y cot x = x2 cot x + 2x
Experiments show that radium disintegrates at a rate proportional to the amount of radium present at the moment. Its half-life is 1590 years. What percentage will disappear in one year?
Solve the differential equation : `"x"(d"y")/(d"x") + "y" - "x" + "xy"cot"x" = 0; "x" != 0.`
`"dy"/"dx" + y` = 5 is a differential equation of the type `"dy"/"dx" + "P"y` = Q but it can be solved using variable separable method also.
`("d"y)/("d"x) + y/(xlogx) = 1/x` is an equation of the type ______.
Correct substitution for the solution of the differential equation of the type `("d"y)/("d"x) = "f"(x, y)`, where f(x, y) is a homogeneous function of zero degree is y = vx.
Solve the differential equation:
`"dy"/"dx" = 2^(-"y")`
If α, β are different values of x satisfying the equation a cos x + b sinα x = c, where a, b and c are constants, then `tan ((alpha + beta)/2)` is
If `x (dy)/(dx) = y(log y - log x + 1)`, then the solution of the dx equation is
Solve the following differential equation: (y – sin2x)dx + tanx dy = 0
Let y = y(x) be the solution of the differential equation `(dy)/(dx) + (sqrt(2)y)/(2cos^4x - cos2x) = xe^(tan^-1(sqrt(2)cost2x)), 0 < x < π/2` with `y(π/4) = π^2/32`. If `y(π/3) = π^2/18e^(-tan^-1(α))`, then the value of 3α2 is equal to ______.
If y = y(x) is the solution of the differential equation `(1 + e^(2x))(dy)/(dx) + 2(1 + y^2)e^x` = 0 and y(0) = 0, then `6(y^'(0) + (y(log_esqrt(3))))^2` is equal to ______.
The population P = P(t) at time 't' of a certain species follows the differential equation `("dp")/("dt")` = 0.5P – 450. If P(0) = 850, then the time at which population becomes zero is ______.
Let y = y(x) be the solution of the differential equation, `(2 + sinxdy)/(y + 1) (dy)/(dx)` = –cosx. If y > 0, y(0) = 1. If y(π) = a, and `(dy)/(dx)` at x = π is b, then the ordered pair (a, b) is equal to ______.