Advertisements
Advertisements
Question
The value of the expression sin [cot–1 (cos (tan–11))] is ______.
Options
0
1
`1/sqrt(3)`
`sqrt(2/3)`
Solution
The value of the expression sin [cot–1 (cos (tan–11))] is `sqrt(2/3)`.
Explanation:
`sin[cot^-1 (cos pi/4)] = sin[cot^-1 1/sqrt(2)]`
= `sin[sin^-1 sqrt(2/3)]`
= `sqrt(2/3)`
APPEARS IN
RELATED QUESTIONS
Solve `3tan^(-1)x + cot^(-1) x = pi`
Find the principal value of the following:
`sin^-1(-sqrt3/2)`
Find the principal value of the following:
`sin^-1(cos (2pi)/3)`
Find the principal value of the following:
`sin^-1((sqrt3-1)/(2sqrt2))`
Find the principal value of the following:
`sin^-1(cos (3pi)/4)`
For the principal value, evaluate of the following:
`cos^-1 1/2+2sin^-1 (1/2)`
Find the principal value of the following:
`tan^-1(cos pi/2)`
For the principal value, evaluate of the following:
`tan^-1{2sin(4cos^-1 sqrt3/2)}`
Find the principal value of the following:
`sec^-1(-sqrt2)`
Find the principal value of the following:
`sec^-1(2tan (3pi)/4)`
Find the principal value of the following:
cosec-1(-2)
For the principal value, evaluate the following:
`sin^-1[cos{2\text(cosec)^-1(-2)}]`
Find the principal value of the following:
`cot^-1(sqrt3)`
Show that `"sin"^-1(5/13) + "cos"^-1(3/5) = "tan"^-1(63/16)`
The index number by the method of aggregates for the year 2010, taking 2000 as the base year, was found to be 116. If sum of the prices in the year 2000 is ₹ 300, find the values of x and y in the data given below
Commodity | A | B | C | D | E | F |
Price in the year 2000 (₹) | 50 | x | 30 | 70 | 116 | 20 |
Price in the year 2010 (₹) | 60 | 24 | y | 80 | 120 | 28 |
Find the principal value of cos–1x, for x = `sqrt(3)/2`.
Prove that tan(cot–1x) = cot(tan–1x). State with reason whether the equality is valid for all values of x.
Find the value of `sin[2cot^-1 ((-5)/12)]`
If sin–1x + sin–1y = `pi/2`, then value of cos–1x + cos–1y is ______.
If `cos(sin^-1 2/5 + cos^-1x)` = 0, then x is equal to ______.
The value of `cot[cos^-1 (7/25)]` is ______.
The set of values of `sec^-1 (1/2)` is ______.
The value of cos (sin–1x + cos–1x), |x| ≤ 1 is ______.
The value of the expression (cos–1x)2 is equal to sec2x.
If `5 sin theta = 3 "then", (sec theta + tan theta)/(sec theta - tan theta)` is equal to ____________.
The general solution of the equation `"cot" theta - "tan" theta = "sec" theta` is ____________ where `(n in I).`
`"sec" {"tan"^-1 (-"y"/3)}` is equal to ____________.
What is the value of x so that the seven-digit number 8439 × 53 is divisible by 99?
What is the principle value of `sin^-1 (1/sqrt(2))`?