English

For the Principal Value, Evaluate the Following: `Cosec^-1(2tan (11pi)/6)` - Mathematics

Advertisements
Advertisements

Question

For the principal value, evaluate the following:

`cosec^-1(2tan  (11pi)/6)`

Solution

`cosec^-1(2tan  (11pi)/6)=cosec^-1[2xx(-1/sqrt3)]`

`=cosec^-1[-2/sqrt3]`

`=cosec^-1[cosec(-pi/3)]`

`=-pi/3`

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Inverse Trigonometric Functions - Exercise 4.05 [Page 21]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 4 Inverse Trigonometric Functions
Exercise 4.05 | Q 3.4 | Page 21

RELATED QUESTIONS

if `tan^(-1) a + tan^(-1) b + tan^(-1) x = pi`, prove that a + b + c = abc 


Find the principal value of the following:

`sin^-1((sqrt3+1)/(2sqrt2))`


Find the principal value of the following:

`tan^-1(-1/sqrt3)`


Find the principal value of the following:

`tan^-1(2cos  (2pi)/3)`


Find the principal value of the following:

`sec^-1(2tan  (3pi)/4)`


​Find the principal value of the following:

`cosec^-1(-sqrt2)`


For the principal value, evaluate the following:

`sec^-1(sqrt2)+2\text{cosec}^-1(-sqrt2)`


For the principal value, evaluate the following:

`sin^-1[cos{2\text(cosec)^-1(-2)}]`


Find the principal value of the following:

`cot^-1(-sqrt3)`


Show that `"sin"^-1(5/13) + "cos"^-1(3/5) = "tan"^-1(63/16)`


Solve for x, if:

tan (cos-1x) = `2/sqrt5`


Find the principal value of cos–1x, for x = `sqrt(3)/2`.


Find the value of `cos^-1(cos  (13pi)/6)`.


Find the value of `tan^-1 (tan  (9pi)/8)`.


The value of cot (sin–1x) is ______.


The domain of sin–1 2x is ______.


Let θ = sin–1 (sin (– 600°), then value of θ is ______.


The value of sin (2 sin–1 (.6)) is ______.


Find the value of `tan^-1 (tan  (2pi)/3)`


Find the value of the expression `sin(2tan^-1  1/3) + cos(tan^-1 2sqrt(2))`


The domain of the function cos–1(2x – 1) is ______.


The value of the expression `2 sec^-1 2 + sin^-1 (1/2)` is ______.


If tan–1x + tan–1y = `(4pi)/5`, then cot–1x + cot–1y equals ______.


The value of `sin^-1 (sin  (3pi)/5)` is ______.


The value of `cos^-1 (cos  (14pi)/3)` is ______.


The value of expression `tan((sin^-1x + cos^-1x)/2)`, when x = `sqrt(3)/2` is ______.


The result `tan^1x - tan^-1y = tan^-1 ((x - y)/(1 + xy))` is true when value of xy is ______.


The value of the expression (cos–1x)2 is equal to sec2x.


The domain of trigonometric functions can be restricted to any one of their branch (not necessarily principal value) in order to obtain their inverse functions.


The period of the function f(x) = cos4x + tan3x is ____________.


The general solution of the equation `"cot"  theta - "tan"  theta = "sec"  theta` is ____________ where `(n in I).`


`2  "cos"^-1 "x = sin"^-1 (2"x" sqrt(1 - "x"^2))` is true for ____________.


`"cos" ["tan"^-1 {"sin" ("cot"^-1  "x")}]` is equal to ____________.


If `"tan"^-1 ("a"/"x") + "tan"^-1 ("b"/"x") = pi/2,` then x is equal to ____________.


`"sec" {"tan"^-1 (-"y"/3)}` is equal to ____________.


What is the value of `tan^-1(1) cos^-1(- 1/2) + sin^-1(- 1/2)`


Assertion (A): Maximum value of (cos–1 x)2 is π2.

Reason (R): Range of the principal value branch of cos–1 x is `[(-π)/2, π/2]`.


Evaluate `sin^-1 (sin  (3π)/4) + cos^-1 (cos π) + tan^-1 (1)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×