हिंदी

For the Principal Value, Evaluate of the Following: `Sin^-1(-1/2)+2cos^-1(-sqrt3/2)` - Mathematics

Advertisements
Advertisements

प्रश्न

For the principal value, evaluate of the following:

`sin^-1(-1/2)+2cos^-1(-sqrt3/2)`

उत्तर

`sin^-1(-1/2)+2cos^-1(-sqrt3/2)`

`=sin^-1{sin(-pi/6)}+2cos^-1(cos  (5pi)/6)`  `[because "Range of sine is"[-pi/2,pi/2];-pi/6in[-pi/2,pi/2] "and range of cosine is"  [0,pi]  ;  (5pi)/6 in[0,pi]]` 

`=-pi/6+2((5pi)/6)`

`=-pi/6+(5pi)/3`

`=(9pi)/6`

`=(3pi)/2`

`therefore sin^-1(-1/2)+2cos^-1(-sqrt3/2)=(3pi)/2`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Inverse Trigonometric Functions - Exercise 4.02 [पृष्ठ १०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 4 Inverse Trigonometric Functions
Exercise 4.02 | Q 5.3 | पृष्ठ १०

संबंधित प्रश्न

Solve `3tan^(-1)x + cot^(-1) x = pi`


For the principal value, evaluate of the following:

`sin^-1(-sqrt3/2)+cos^-1(sqrt3/2)`


Find the principal value of the following:

`tan^-1(1/sqrt3)`


Find the principal value of the following:

`tan^-1(cos  pi/2)`


Find the principal value of the following:

`sec^-1(2)`


Find the principal value of the following:

`sec^-1(2sin  (3pi)/4)`


Find the principal value of the following:

`sec^-1(2tan  (3pi)/4)`


For the principal value, evaluate the following:

`tan^-1sqrt3-sec^-1(-2)`


For the principal value, evaluate the following:

`sin^-1[cos{2\text(cosec)^-1(-2)}]`


Find the principal value of the following:

`cot^-1(-sqrt3)`


Find the principal value of the following:

`cot^-1(-1/sqrt3)`


Show that `"sin"^-1(5/13) + "cos"^-1(3/5) = "tan"^-1(63/16)`


Find the principal value of cos–1x, for x = `sqrt(3)/2`.


Find the value of `sin[2cot^-1 ((-5)/12)]`


Find the values of x which satisfy the equation sin–1x + sin–1(1 – x) = cos–1x.


The value of `sin^-1 (cos((43pi)/5))` is ______.


The principal value of the expression cos–1[cos (– 680°)] is ______.


The domain of sin–1 2x is ______.


The principal value of `sin^-1 ((-sqrt(3))/2)` is ______.


The domain of the function defined by f(x) = `sin^-1 sqrt(x- 1)` is ______.


If `cos(sin^-1  2/5 + cos^-1x)` = 0, then x is equal to ______.


The value of sin (2 tan–1(0.75)) is equal to ______.


The value of `sin^-1 (sin  (3pi)/5)` is ______.


The principal value of `tan^-1 sqrt(3)` is ______.


The value of expression `tan((sin^-1x + cos^-1x)/2)`, when x = `sqrt(3)/2` is ______.


The result `tan^1x - tan^-1y = tan^-1 ((x - y)/(1 + xy))` is true when value of xy is ______.


The value of the expression (cos–1x)2 is equal to sec2x.


`2  "cos"^-1 "x = sin"^-1 (2"x" sqrt(1 - "x"^2))` is true for ____________.


If sin `("sin"^-1 1/5 + "cos"^-1 "x") = 1,` then the value of x is ____________.


`"sec" {"tan"^-1 (-"y"/3)}` is equal to ____________.


If `"tan"^-1 "x" + "tan"^-1"y + tan"^-1 "z" = pi/2, "x,y,x" > 0,` then the value of xy+yz+zx is ____________.


What is the value of x so that the seven-digit number 8439 × 53 is divisible by 99?


What is the principle value of `sin^-1 (1/sqrt(2))`?


What is the principal value of `cot^-1 ((-1)/sqrt(3))`?


Assertion (A): Maximum value of (cos–1 x)2 is π2.

Reason (R): Range of the principal value branch of cos–1 x is `[(-π)/2, π/2]`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×