हिंदी

Prove that sin-1(35)+cos-1(1213)=sin-1(5665) - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Prove that `sin^(-1) (3/5) + cos^(-1) (12/13) = sin^(-1) (56/65)`

योग

उत्तर

Let `cos^(-1)  12/13 = x`

∴ `cos x = 12/13`

∴ `sin x = 5/13`

and let `sin^(-1)  3/5 = y `

sin y = `3/5`

`:. cos y= 4/5`

∴ using sin (x + y) = sin x cos y + cos x sin y

`= 5/13xx4/5+ 12/13xx3/5`

`= (20+36)/(13xx5)`

= `56/65`

∴ x + y =`sin^(-1)  56/65`

`cos^(-1)  12/13 + sin^(-1)  3/5 = sin^(-1)  56/65`

Hence proved.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2017-2018 (March)

APPEARS IN

संबंधित प्रश्न

if `tan^(-1) a + tan^(-1) b + tan^(-1) x = pi`, prove that a + b + c = abc 


Find the principal value of the following:

`sin^-1(cos  (2pi)/3)`


Find the principal value of the following:

`sin^-1((sqrt3-1)/(2sqrt2))`


Find the principal value of the following:

`sin^-1((sqrt3+1)/(2sqrt2))`


Find the principal value of the following:

`sin^-1(tan  (5pi)/4)`


For the principal value, evaluate of the following:

`cos^-1  1/2+2sin^-1  (1/2)`


For the principal value, evaluate of the following:

`sin^-1(-sqrt3/2)+cos^-1(sqrt3/2)`


Find the principal value of the following:

`tan^-1(1/sqrt3)`


Find the principal value of the following:

`tan^-1(cos  pi/2)`


For the principal value, evaluate of the following:

`tan^-1{2sin(4cos^-1  sqrt3/2)}`


​Find the principal value of the following:

cosec-1(-2)


​Find the principal value of the following:

`\text(cosec)^-1(2/sqrt3)`


​Find the principal value of the following:

`cosec^-1(2cos  (2pi)/3)`


For the principal value, evaluate the following:

`sin^-1(-sqrt3/2)+\text{cosec}^-1(-2/sqrt3)`


For the principal value, evaluate the following:

`sec^-1(sqrt2)+2\text{cosec}^-1(-sqrt2)`


Find the principal value of the following:

`cot^-1(-sqrt3)`


Find the principal value of the following:

`cot^-1(-1/sqrt3)`


Solve for x, if:

tan (cos-1x) = `2/sqrt5`


Find the value of `cos^-1(cos  (13pi)/6)`.


Prove that tan(cot–1x) = cot(tan–1x). State with reason whether the equality is valid for all values of x.


Find the value of the expression `sin(2tan^-1  1/3) + cos(tan^-1 2sqrt(2))`


Find the value of `4tan^-1  1/5 - tan^-1  1/239`


If `cos(sin^-1  2/5 + cos^-1x)` = 0, then x is equal to ______.


The value of sin (2 tan–1(0.75)) is equal to ______.


The value of the expression `2 sec^-1 2 + sin^-1 (1/2)` is ______.


If tan–1x + tan–1y = `(4pi)/5`, then cot–1x + cot–1y equals ______.


The value of `cot[cos^-1 (7/25)]` is ______.


The principal value of `cos^-1 (- 1/2)` is ______.


The value of `sin^-1 (sin  (3pi)/5)` is ______.


If `cos(tan^-1x + cot^-1 sqrt(3))` = 0, then value of x is ______.


The value of `cos^-1 (cos  (14pi)/3)` is ______.


The value of expression `tan((sin^-1x + cos^-1x)/2)`, when x = `sqrt(3)/2` is ______.


The principal value of `sin^-1 [cos(sin^-1  1/2)]` is `pi/3`.


If sin `("sin"^-1 1/5 + "cos"^-1 "x") = 1,` then the value of x is ____________.


If `"tan"^-1 ("a"/"x") + "tan"^-1 ("b"/"x") = pi/2,` then x is equal to ____________.


`"sec" {"tan"^-1 (-"y"/3)}` is equal to ____________.


Assertion (A): Maximum value of (cos–1 x)2 is π2.

Reason (R): Range of the principal value branch of cos–1 x is `[(-π)/2, π/2]`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×