Advertisements
Advertisements
Question
Prove the following:
`sin^-1(1/sqrt(2)) -3sin^-1(sqrt(3)/2) = -(3π)/(4)`
Solution
Let `sin^-1(1/sqrt(2)) = α, "where" - pi/(2) ≤ α ≤ pi/(2)`
∴ sin α = `(1)/sqrt(2) = sin pi/(4)`
∴ α = `pi/(4) ...[∵ - pi/(2) ≤ pi/(4) ≤ pi/(2)]`
∴ `sin^-1(1/sqrt(2)) = pi/(4)` ...(1)
Let `sin^-1(sqrt(3)/2) = β, "where" - pi/(2) ≤ β ≤ pi/(2)`
∴ sin β = `sqrt(3)/(2) = sin pi/(3)`
∴ β = `pi/(3) ...[∵ - pi/(2) ≤ pi/(3) ≤ pi/(2)]`
∴ `sin^-1(sqrt(3)/2) = pi/(3)` ...(2)
L.H.S. = `sin^-1(1/sqrt(2)) - 3sin^-1(sqrt(3)/2)`
= `pi/(4) - 3(pi/3)` ...[By (1) and (2)]
= `pi/(4) - pi`
= `-(3pi)/(4)`
= R.H.S.
APPEARS IN
RELATED QUESTIONS
Find the principal values of `sin^(-1) (-1/2)`
Find the principal value of `cos^(-1) (sqrt3/2)`
Find the principal value of cosec−1 (2)
Find the principal value of tan−1 (−1)
Find the principal value of `cot^(-1) (sqrt3)`
Find the value of the following:
`cos^(-1) (1/2) + 2 sin^(-1)(1/2)`
Find the value of the following:
If sin−1 x = y, then
`tan^(-1) sqrt3 - sec^(-1)(-2)` is equal to ______.
Find the principal value of `sin^-1(1/sqrt2)`
Evaluate the following:
`tan^-1(tan (5pi)/6)+cos^-1{cos((13pi)/6)}`
Find the set of values of `cosec^-1(sqrt3/2)`
Evaluate the following:
`cot^-1 1/sqrt3-\text(cosec)^-1(-2)+sec^-1(2/sqrt3)`
In ΔABC, if a = 18, b = 24, c = 30 then find the values of sin `(A/2)`.
In ΔABC, if a = 18, b = 24, c = 30 then find the values of tan `A/2`
In ΔABC, if a = 18, b = 24, c = 30 then find the values of A(ΔABC)
Find the principal value of the following: cosec- 1(2)
Find the principal value of the following: tan- 1( - √3)
Find the principal value of the following: sin-1 `(1/sqrt(2))`
Evaluate the following:
`cos^-1(1/2) + 2sin^-1(1/2)`
Prove the following:
`sin^-1(-1/2) + cos^-1(-sqrt(3)/2) = cos^-1(-1/2)`
Find the principal solutions of the following equation:
tan 5θ = -1
Find the principal solutions of the following equation:
cot 2θ = 0.
sin−1x − cos−1x = `pi/6`, then x = ______
The principal value of cos−1`(-1/2)` is ______
Evaluate cot(tan−1(2x) + cot−1(2x))
Prove that `2 tan^-1 (3/4) = tan^-1(24/7)`
Show that `sin^-1(3/5) + sin^-1(8/17) = cos^-1(36/85)`
Prove that `2 tan^-1 (1/8) + tan^-1 (1/7) + 2tan^-1 (1/5) = pi/4`
Find the principal value of the following:
`sin^-1 (- 1/2)`
Find the principal value of the following:
tan-1 (-1)
Find the principal value of the following:
cosec-1 (2)
Find the principal value of the following:
`sec^-1 (-sqrt2)`
Evaluate:
`cos[tan^-1 (3/4)]`
Express `tan^-1 ((cos x - sin x)/(cos x + sin x))`, 0 < x < π in the simplest form.
lf `sqrt3costheta + sintheta = sqrt2`, then the general value of θ is ______
sin[3 sin-1 (0.4)] = ______.
The principal value of `tan^{-1(sqrt3)}` is ______
The principal value of `sin^-1 (sin (3pi)/4)` is ______.
If `tan^-1x + tan^-1y = (4pi)/5`, then `cot^-1x + cot^-1y` equals ______.
`(sin^-1(-1/2) + tan^-1(-1/sqrt(3)))/(sec^-1 (-2/sqrt(3)) + cos^-1(1/sqrt(2))` = ______.
`sin{tan^-1((1 - x^2)/(2x)) + cos^-1((1 - x^2)/(1 + x^2))}` is equal to ______
If `3tan^-1x +cot^-1x = pi`, then xis equal to ______.
Show that `cos(2tan^-1 1/7) = sin(4tan^-1 1/3)`
Show that `sin^-1 5/13 + cos^-1 3/5 = tan^-1 63/16`
All trigonometric functions have inverse over their respective domains.
When `"x" = "x"/2`, then tan x is ____________.
`("cos" 8° - "sin" 8°)/("cos" 8° + "sin" 8°)` is equal to ____________.
If `"sin"^-1("x"^2 - 7"x" + 12) = "n"pi, AA "n" in "I"`, then x = ____________.
If tan-1 3 + tan-1 x = tan-1 8, then x = ____________.
`"cos"^-1 1/2 + 2 "sin"^-1 1/2` is equal to ____________.
`"sin"^-1 (1 - "x") - 2 "sin"^-1 "x" = pi/2`
The value of `"cos"^-1 ("cos" ((33 pi)/5))` is ____________.
`2"tan"^-1 ("cos x") = "tan"^-1 (2 "cosec x")`
If `"cot"^-1 (sqrt"cos" alpha) - "tan"^-1 (sqrt "cos" alpha) = "x",` then sinx is equal to ____________.
If a = `(2sin theta)/(1 + costheta + sintheta)`, then `(1 + sintheta - costheta)/(1 + sintheta)` is
If |Z1| = |Z2| and arg (Z1) + arg (Z2) = 0, then
Which of the following functions is inverse of itself?
The number of solutions of sin–1x + sin–1(1 – x) = cos–1x is
If `sqrt(2)` sec θ + tan θ = 1, then the general value of θ is
What is the value of `sin^-1(sin (3pi)/4)`?
Values of tan–1 – sec–1(–2) is equal to
`tan^-1 (1 - x)/(1 + x) = 1/2tan^-1x, (x > 0)`, x then will be equal to.
If f(x) = x5 + 2x – 3, then (f–1)1 (–3) = ______.
Find the principal value of `cot^-1 ((-1)/sqrt(3))`
If f'(x) = x–1, then find f(x)
Assertion (A): The domain of the function sec–12x is `(-∞, - 1/2] ∪ pi/2, ∞)`
Reason (R): sec–1(–2) = `- pi/4`
If θ = `sin^-1((2x)/(1 + x^2)) + cos^-1((1 - x^2)/(1 + x^2))`, for `x ≥ 3/2` then the absolute value of `((cosθ + tanθ + 4)/secθ)` is ______.
Consider f(x) = sin–1[2x] + cos–1([x] – 1) (where [.] denotes greatest integer function.) If domain of f(x) is [a, b) and the range of f(x) is {c, d} then `a + b + (2d)/c` is equal to ______. (where c < d)
Let x = sin–1(sin8) + cos–1(cos11) + tan–1(tan7), and x = k(π – 2.4) for an integer k, then the value of k is ______.
Number of values of x satisfying the system of equations `sin^-1sqrt(2 + e^(-2x) - 2e^-x) + sec^-1sqrt(1 - x^2 + x^4) = π/2` and `5^(1+tan^-1x)` = 4 + [cos–1x] is ______ (where [.] denotes greatest integer function)
sin [cot–1 (cos (tan–1 x))] = ______.
The value of `tan(cos^-1 4/5 + tan^-1 2/3)` is ______.
Solve for x:
5tan–1x + 3cot–1x = 2π