Advertisements
Advertisements
प्रश्न
Show that `tan^-1 (1/2) + tan^-1 (2/11) = tan^-1 (3/4)`
उत्तर
We know that tan-1 x + tan-1 y = `tan^-1 ((x + y)/(1 - xy))`
Now LHS = `tan^-1 (1/2) + tan^-1 (2/11)`
`= tan^-1 ((1/2 + 2/11)/(1 - 1/2 xx 2/11))`
`= tan^-1 (((11 + 4)/22)/(1 - 1/11))`
`= tan^-1 ((15/22)/(10/11))`
`= tan^-1 (15/22 xx 11/10)`
`= tan^-1 ((3 xx 1)/(2 xx 2))`
`= tan^-1 (3/4)` = RHS
APPEARS IN
संबंधित प्रश्न
Find the principal value of cosec−1 (2)
Prove the following:
`tan^-1(1/2) + tan^-1(1/3) = pi/(4)`
Evaluate:
`sin[cos^-1 (3/5)]`
Express `tan^-1 [(cos x)/(1 - sin x)], - pi/2 < x < (3pi)/2` in the simplest form.
Find the principal value of `tan^-1 (sqrt(3))`
The value of cot `(tan^-1 2x + cot^-1 2x)` is ______
`"sin" 265° - "cos" 265°` is ____________.
Domain and Rariges of cos–1 is:-
If `sin(sin^-1 1/5 + cos^-1 x) = 1`, the what will be the value of x?
If tan 4θ = `tan(2/θ)`, then the general value of θ is ______.