Advertisements
Advertisements
प्रश्न
Prove that:
`tan^-1 (4/3) + tan^-1 (1/7) = pi/4`
उत्तर
LHS = `tan^-1 (4/3) + tan^-1 (1/7)`
`= tan^-1 ((4/3 - 1/7)/(1 + 4/3 * 1/7))`
`= tan^-1 ((28 - 3)/(21 + 4))`
`= tan^-1 (1) = pi/4` = RHS
APPEARS IN
संबंधित प्रश्न
If `tan^-1((x-1)/(x-2))+cot^-1((x+2)/(x+1))=pi/4; `
Find the value of the following:
`tan^(-1)(1) + cos^(-1) (-1/2) + sin^(-1) (-1/2)`
Find the principal value of the following:
cosec-1 (2)
Express `tan^-1 ((cos x - sin x)/(cos x + sin x))`, 0 < x < π in the simplest form.
The value of cot `(tan^-1 2x + cot^-1 2x)` is ______
The value of `cos(pi/4 + x) - cos(pi/4 - x)` is ______.
Prove that `cot(pi/4 - 2cot^-1 3)` = 7
`("cos" 8° - "sin" 8°)/("cos" 8° + "sin" 8°)` is equal to ____________.
The value of `"cos"^-1 ("cos" ((33 pi)/5))` is ____________.
If θ = `sin^-1((2x)/(1 + x^2)) + cos^-1((1 - x^2)/(1 + x^2))`, for `x ≥ 3/2` then the absolute value of `((cosθ + tanθ + 4)/secθ)` is ______.