हिंदी

Find the value of the following: tan-1(1)+cos-1(-12)+sin-1(-12) - Mathematics

Advertisements
Advertisements

प्रश्न

Find the value of the following:

`tan^(-1)(1) + cos^(-1) (-1/2) + sin^(-1) (-1/2)`

योग

उत्तर १

Let `tan^(-1) (1)` = x Then tan x= 1 = tan `pi/4`

`:. tan^(-1) (1) = pi/4`

Let `cos^(-1) (-1/2) =  y` Then, `cos y = -1/2 = -cos(pi/3) = cos(pi - pi/3) = cos ((2pi)/3)`

`:. cos^(-1) (- 1/2) = (2pi)/3`

Let `sin^(-1) (-1/2) = z`. Then `sin z =-1/2 = -sin(pi/6) = sin(-pi/6)`

`:. sin^(-1)(-1/2) = - pi/6`

`:. tan^(-1) (1) + cos^(-1) (-1/2) + sin^(-1) (-1/2)`

`= pi/4 + (2pi)/3 - pi/6`

`= (3pi + 8pi - 2pi)/12 `

`= (9pi)/12 = (3pi)/4`

shaalaa.com

उत्तर २

`"tan"^-1 (1) + "cos"^-1 (-1/2) + "sin"^-1 (-1/2)`

`= "tan"^-1 ("tan" pi/4) + "cos"^-1 ("cos" (2pi)/3) + "sin"^-1 "sin" ((-pi)/6)`

`= pi/4 + (2pi)/3 + ((-pi)/6)`

`= (3pi + 8pi - 2pi)/12`

`= (9 pi)/12 = (3 pi)/4`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Inverse Trigonometric Functions - Exercise 2.1 [पृष्ठ ४२]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 2 Inverse Trigonometric Functions
Exercise 2.1 | Q 10 | पृष्ठ ४२

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

If `tan^-1((x-1)/(x-2))+cot^-1((x+2)/(x+1))=pi/4; `


Find the principal value of tan−1 (−1)


Find the principal value of  `cos^(-1) (-1/sqrt2)`


`sin^-1  1/2-2sin^-1  1/sqrt2`


Find the domain of the following function:

`f(x)sin^-1sqrt(x^2-1)`


If `sin^-1 x + sin^-1 y+sin^-1 z+sin^-1 t=2pi` , then find the value of x2 + y2 + z2 + t2 


Evaluate the following:

`cot^-1  1/sqrt3-\text(cosec)^-1(-2)+sec^-1(2/sqrt3)`


In ΔABC, if a = 18, b = 24, c = 30 then find the values of tan `A/2`


In ΔABC prove that `sin  "A"/(2). sin  "B"/(2). sin  "C"/(2) = ["A(ΔABC)"]^2/"abcs"`


Find the principal value of the following: cosec- 1(2)


Evaluate the following:

`cos^-1(1/2) + 2sin^-1(1/2)`


Evaluate the following:

`tan^-1 sqrt(3) - sec^-1 (-2)`


Prove the following: 

`sin^-1(1/sqrt(2)) -3sin^-1(sqrt(3)/2) = -(3π)/(4)`


Evaluate cot(tan−1(2x) + cot−1(2x))


Find the value of `cos^-1 (1/2) + tan^-1 (1/sqrt(3))`


Evaluate `cos[pi/6 + cos^-1 (- sqrt(3)/2)]`


Find the principal value of the following:

cosec-1 (2)


Find the principal value of the following:

`sec^-1 (-sqrt2)`


Show that `tan^-1 (1/2) + tan^-1 (2/11) = tan^-1 (3/4)`


Show that `sin^-1 (- 3/5) - sin^-1 (- 8/17) = cos^-1 (84/85)`


The principle solutions of equation tan θ = -1 are ______ 


sin[3 sin-1 (0.4)] = ______.


`(sin^-1(-1/2) + tan^-1(-1/sqrt(3)))/(sec^-1 (-2/sqrt(3)) + cos^-1(1/sqrt(2))` = ______.


The equation tan–1x – cot–1x = `(1/sqrt(3))` has ______.


Show that `cos(2tan^-1  1/7) = sin(4tan^-1  1/3)`


Show that `sin^-1  5/13 + cos^-1  3/5 = tan^-1  63/16`


If `"x + y" = "x"/4` then (1+ tanx)(1 + tany) is equal to ____________.


The value of `"cos"^-1 ("cos" ((33 pi)/5))` is ____________.


The equation 2cos-1 x + sin-1 x `= (11pi)/6` has ____________.


If |Z1| = |Z2| and arg (Z1) + arg (Z2) = 0, then


If `sqrt(2)` sec θ + tan θ = 1, then the general value of θ is


`sin(tan^-1x), |x| < 1` is equal to


cos–1(cos10) is equal to ______.


The value of `cos^-1(cos(π/2)) + cos^-1(sin((2π)/2))` is ______.


`(tan^-1 (sqrt(3)) - sec^-1(-2))/("cosec"^-1(-sqrt(2)) + cos^-1(-1/2))` is equal to ______.


`sin[π/3 + sin^-1 (1/2)]` is equal to ______.


Prove that:

tan–1x + tan–1y = `π + tan^-1((x + y)/(1 - xy))`, provided x > 0, y > 0, xy > 1


If tan 4θ = `tan(2/θ)`, then the general value of θ is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×