Advertisements
Advertisements
प्रश्न
Find the value of the following:
`tan^(-1)(1) + cos^(-1) (-1/2) + sin^(-1) (-1/2)`
उत्तर १
Let `tan^(-1) (1)` = x Then tan x= 1 = tan `pi/4`
`:. tan^(-1) (1) = pi/4`
Let `cos^(-1) (-1/2) = y` Then, `cos y = -1/2 = -cos(pi/3) = cos(pi - pi/3) = cos ((2pi)/3)`
`:. cos^(-1) (- 1/2) = (2pi)/3`
Let `sin^(-1) (-1/2) = z`. Then `sin z =-1/2 = -sin(pi/6) = sin(-pi/6)`
`:. sin^(-1)(-1/2) = - pi/6`
`:. tan^(-1) (1) + cos^(-1) (-1/2) + sin^(-1) (-1/2)`
`= pi/4 + (2pi)/3 - pi/6`
`= (3pi + 8pi - 2pi)/12 `
`= (9pi)/12 = (3pi)/4`
उत्तर २
`"tan"^-1 (1) + "cos"^-1 (-1/2) + "sin"^-1 (-1/2)`
`= "tan"^-1 ("tan" pi/4) + "cos"^-1 ("cos" (2pi)/3) + "sin"^-1 "sin" ((-pi)/6)`
`= pi/4 + (2pi)/3 + ((-pi)/6)`
`= (3pi + 8pi - 2pi)/12`
`= (9 pi)/12 = (3 pi)/4`
APPEARS IN
संबंधित प्रश्न
If `tan^-1((x-1)/(x-2))+cot^-1((x+2)/(x+1))=pi/4; `
Find the principal value of tan−1 (−1)
Find the principal value of `cos^(-1) (-1/sqrt2)`
`sin^-1 1/2-2sin^-1 1/sqrt2`
Find the domain of the following function:
`f(x)sin^-1sqrt(x^2-1)`
If `sin^-1 x + sin^-1 y+sin^-1 z+sin^-1 t=2pi` , then find the value of x2 + y2 + z2 + t2
Evaluate the following:
`cot^-1 1/sqrt3-\text(cosec)^-1(-2)+sec^-1(2/sqrt3)`
In ΔABC, if a = 18, b = 24, c = 30 then find the values of tan `A/2`
In ΔABC prove that `sin "A"/(2). sin "B"/(2). sin "C"/(2) = ["A(ΔABC)"]^2/"abcs"`
Find the principal value of the following: cosec- 1(2)
Evaluate the following:
`cos^-1(1/2) + 2sin^-1(1/2)`
Evaluate the following:
`tan^-1 sqrt(3) - sec^-1 (-2)`
Prove the following:
`sin^-1(1/sqrt(2)) -3sin^-1(sqrt(3)/2) = -(3π)/(4)`
Evaluate cot(tan−1(2x) + cot−1(2x))
Find the value of `cos^-1 (1/2) + tan^-1 (1/sqrt(3))`
Evaluate `cos[pi/6 + cos^-1 (- sqrt(3)/2)]`
Find the principal value of the following:
cosec-1 (2)
Find the principal value of the following:
`sec^-1 (-sqrt2)`
Show that `tan^-1 (1/2) + tan^-1 (2/11) = tan^-1 (3/4)`
Show that `sin^-1 (- 3/5) - sin^-1 (- 8/17) = cos^-1 (84/85)`
The principle solutions of equation tan θ = -1 are ______
sin[3 sin-1 (0.4)] = ______.
`(sin^-1(-1/2) + tan^-1(-1/sqrt(3)))/(sec^-1 (-2/sqrt(3)) + cos^-1(1/sqrt(2))` = ______.
The equation tan–1x – cot–1x = `(1/sqrt(3))` has ______.
Show that `cos(2tan^-1 1/7) = sin(4tan^-1 1/3)`
Show that `sin^-1 5/13 + cos^-1 3/5 = tan^-1 63/16`
If `"x + y" = "x"/4` then (1+ tanx)(1 + tany) is equal to ____________.
The value of `"cos"^-1 ("cos" ((33 pi)/5))` is ____________.
The equation 2cos-1 x + sin-1 x `= (11pi)/6` has ____________.
If |Z1| = |Z2| and arg (Z1) + arg (Z2) = 0, then
If `sqrt(2)` sec θ + tan θ = 1, then the general value of θ is
`sin(tan^-1x), |x| < 1` is equal to
cos–1(cos10) is equal to ______.
The value of `cos^-1(cos(π/2)) + cos^-1(sin((2π)/2))` is ______.
`(tan^-1 (sqrt(3)) - sec^-1(-2))/("cosec"^-1(-sqrt(2)) + cos^-1(-1/2))` is equal to ______.
`sin[π/3 + sin^-1 (1/2)]` is equal to ______.
Prove that:
tan–1x + tan–1y = `π + tan^-1((x + y)/(1 - xy))`, provided x > 0, y > 0, xy > 1
If tan 4θ = `tan(2/θ)`, then the general value of θ is ______.