Advertisements
Advertisements
प्रश्न
Find the principal value of the following:
`sec^-1 (-sqrt2)`
उत्तर
Let `sec^-1 (-sqrt2)` = y
`-sqrt2` = sec y
sec y = `- sqrt2`
`1/(cos y) = - sqrt2`
Taking reciprocal cos y = `((-1)/sqrt2)` [where 0 ≤ y ≤ π]
cos y = `cos (pi - pi/4) [cos pi/4 = 1/sqrt2 = cos (180^circ - theta) = - cos theta]`
`= cos ((4pi - pi)/4) = cos (3pi)/4`
∴ The principal value of sec-1 `(- sqrt2)` is `(3pi)/4`
APPEARS IN
संबंधित प्रश्न
Find the value of the following:
`tan^(-1)(1) + cos^(-1) (-1/2) + sin^(-1) (-1/2)`
Find the principal value of the following: cos- 1`(-1/2)`
Find the principal value of `sec^-1 (- sqrt(2))`
The value of cot (- 1110°) is equal to ______.
`cos(2sin^-1 3/4+cos^-1 3/4)=` ______.
Show that `2tan^-1 (-3) = (-pi)/2 + tan^-1 ((-4)/3)`
If tan-1 3 + tan-1 x = tan-1 8, then x = ____________.
`"cos"^-1 ("cos" ((7pi)/6))` is equal to ____________.
If x ∈ R – {0}, then `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2) - sqrt(1 - x^2)))`
The value of cos (2cos–1 x + sin–1 x) at x = `1/5` is ______.