Advertisements
Advertisements
प्रश्न
Express `tan^-1 [(cos x)/(1 - sin x)], - pi/2 < x < (3pi)/2` in the simplest form.
उत्तर
`tan^-1 [(cos x)/(1 - sin x)]`
`= tan^-1 [(cos^2 x/2 - sin^2 x/2)/(cos^2 x/2 + sin^2 x/2 - 2 sin x/2 cos x/2)]`
`= tan^-1 [(cos^2 x/2 - sin^2 x/2)/(cos x/2 - sin x/2)^2]`
`= tan^-1 [((cos x/2 - sin x/2)(cos x/2 + sin x/2))/(cos x/2 - sin x/2)^2]`
[∵ a2 – b2 = (a + b) (a – b)]
`= tan^-1 [(cos x/2 + sin x/2)/(cos x/2 - sin x/2)]`
`= tan^-1 [((cos x/2)/(cos x/2) + (sin x/2)/(cos x/2))/((cos x/2)/(cos x/2) - (sin x/2)/(cos x/2))]`
[∵ Divide each term by cos `x/2`]
`= tan^-1 [(1 + tan x/2)/(1 - tan x/2)]`
`= tan^-1 [(tan pi/4 + tan x/2)/(1 - tan pi/4 tan x/2)]`
`= tan^-1 [tan (pi/4 + x/2)] = pi/4 + x/2`
संबंधित प्रश्न
Find the principal value of `cos^(-1) (-1/2)`
Find the principal value of `cosec^(-1)(-sqrt2)`
`tan^(-1) sqrt3 - sec^(-1)(-2)` is equal to ______.
Find the value of the following:
`cos^(-1) (cos (13pi)/6)`
`sin^-1{cos(sin^-1 sqrt3/2)}`
Find the domain of `f(x)=cotx+cot^-1x`
Evaluate the following:
`cot^-1{2cos(sin^-1 sqrt3/2)}`
Evaluate the following:
`cos^-1(1/2) + 2sin^-1(1/2)`
Evaluate the following:
`"cosec"^-1(-sqrt(2)) + cot^-1(sqrt(3))`
Evaluate cot(tan−1(2x) + cot−1(2x))
Prove that sin `[tan^-1 ((1 - x^2)/(2x)) + cos^-1 ((1 - x^2)/(1 + x^2))]` = 1
Show that `sin^-1(3/5) + sin^-1(8/17) = cos^-1(36/85)`
Find the principal value of the following:
`sin^-1 (- 1/2)`
Find the principal value of `sec^-1 (- sqrt(2))`
Choose the correct alternative:
cos 2θ cos 2ϕ+ sin2 (θ – ϕ) – sin2 (θ + ϕ) is equal to
`sin^-1x + sin^-1 1/x + cos^-1x + cos^-1 1/x` = ______
The principle solutions of equation tan θ = -1 are ______
The principal value of `tan^{-1(sqrt3)}` is ______
The principal value of `sin^-1 (sin (3pi)/4)` is ______.
If sin `(sin^-1 1/3 + cos^-1 x) = 1`, then the value of x is ______.
`tan[2tan^-1 (1/3) - pi/4]` = ______.
`sin{tan^-1((1 - x^2)/(2x)) + cos^-1((1 - x^2)/(1 + x^2))}` is equal to ______
`cos^-1 4/5 + tan^-1 3/5` = ______.
The domain of the function y = sin–1 (– x2) is ______.
The domain of y = cos–1(x2 – 4) is ______.
Prove that `cot(pi/4 - 2cot^-1 3)` = 7
If 2 tan–1(cos θ) = tan–1(2 cosec θ), then show that θ = π 4, where n is any integer.
Prove that `tan^-1 1/4 + tan^-1 2/9 = sin^-1 1/sqrt(5)`
`"cos" 2 theta` is not equal to ____________.
If sin-1 x – cos-1 x `= pi/6,` then x = ____________.
If tan-1 (x – 1) + tan-1 x + tan-1 (x + 1) = tan-1 3x, then the values of x are ____________.
If 6sin-1 (x2 – 6x + 8.5) = `pi`, then x is equal to ____________.
If A = `[(cosx, sinx),(-sinx, cosx)]`, then A1 A–1 is
cos–1(cos10) is equal to ______.
If x ∈ R – {0}, then `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2) - sqrt(1 - x^2)))`
If tan–1 2x + tan–1 3x = `π/4`, then x = ______.
Find the value of `tan^-1(x/y) + tan^-1((y - x)/(y + x))`