Advertisements
Advertisements
प्रश्न
Solve the following equation `cos(tan^-1x) = sin(cot^-1 3/4)`
उत्तर
Given that `cos(tan^-1x) = sin(cot^-1 3/4)`
⇒ `cos[cos^-1 1/sqrt(1 + x^2)] = sin[sin^-1 4/5]` ......
⇒ `1/sqrt(1 + x^2) = 4/5`
Squaring both sides we get,
`1/(1 + x^2) = 16/25`
⇒ `1 + x^2 = 25/16`
⇒ `x^2 = 25/16 - 1 = 9/16`
⇒ x = `+- 3/4`
Hence, x = `(-3)/4, 3/4`.
APPEARS IN
संबंधित प्रश्न
Find the domain of the following function:
`f(x)sin^-1sqrt(x^2-1)`
Evaluate the following:
`tan^-1(tan (5pi)/6)+cos^-1{cos((13pi)/6)}`
In ΔABC, if a = 18, b = 24, c = 30 then find the values of tan `A/2`
Find the principal value of the following: cos- 1`(-1/2)`
Prove the following:
`sin^-1(3/5) + cos^-1(12/13) = sin^-1(56/65)`
`tan^-1(tan (7pi)/6)` = ______
Find the principal value of the following:
cosec-1 (2)
Prove that:
2 tan-1 (x) = `sin^-1 ((2x)/(1 + x^2))`
Evaluate:
`cos[tan^-1 (3/4)]`
Evaluate: `cos (sin^-1 (4/5) + sin^-1 (12/13))`
Express `tan^-1 [(cos x)/(1 - sin x)], - pi/2 < x < (3pi)/2` in the simplest form.
Find the principal value of `tan^-1 (sqrt(3))`
lf `sqrt3costheta + sintheta = sqrt2`, then the general value of θ is ______
If sin `(sin^-1 1/3 + cos^-1 x) = 1`, then the value of x is ______.
The value of `sin^-1(cos (53pi)/5)` is ______
The value of `sin^-1[cos(pi/3)] + sin^-1[tan((5pi)/4)]` is ______.
The domain of y = cos–1(x2 – 4) is ______.
`"tan"^-1 (sqrt3)`
`"sin"^-1 (1/sqrt2)`
`"cos"^-1 ["cos" (2 "cot"^-1 (sqrt2 - 1))] =` ____________.
The range of sin-1 x + cos-1 x + tan-1 x is ____________.
If `"sin"^-1("x"^2 - 7"x" + 12) = "n"pi, AA "n" in "I"`, then x = ____________.
Domain and Rariges of cos–1 is:-
`sin(tan^-1x), |x| < 1` is equal to
Find the principal value of `cot^-1 ((-1)/sqrt(3))`
`lim_(n→∞)tan{sum_(r = 1)^n tan^-1(1/(1 + r + r^2))}` is equal to ______.
`(tan^-1 (sqrt(3)) - sec^-1(-2))/("cosec"^-1(-sqrt(2)) + cos^-1(-1/2))` is equal to ______.
If cos–1 x > sin–1 x, then ______.
The value of `tan(cos^-1 4/5 + tan^-1 2/3)` is ______.