हिंदी

Solve the following equation cos(tan-1x)=sin(cot-1 34) - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following equation `cos(tan^-1x) = sin(cot^-1  3/4)`

योग

उत्तर

Given that `cos(tan^-1x) = sin(cot^-1  3/4)`

⇒ `cos[cos^-1  1/sqrt(1 + x^2)] = sin[sin^-1  4/5]`  ......

\begin{bmatrix}\begin{array}[b]{r} \left( \because \tan^{-1}x = \cos^{-1} (\frac{1}{\sqrt{1 + x^2}} \right)\\ \left( \cot^{-1}x = \sin^{-1} (\frac{1}{\sqrt{1 + x^2}}\right) \end{array}\end{bmatrix}

⇒  `1/sqrt(1 + x^2) = 4/5`

Squaring both sides we get,

`1/(1 + x^2) = 16/25`

⇒ `1 + x^2 = 25/16`

⇒ `x^2 = 25/16 - 1 = 9/16`

⇒  x = `+- 3/4`

Hence, x = `(-3)/4, 3/4`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Inverse Trigonometric Functions - Exercise [पृष्ठ ३६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 2 Inverse Trigonometric Functions
Exercise | Q 11 | पृष्ठ ३६

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Find the domain of the following function:

`f(x)sin^-1sqrt(x^2-1)`


Evaluate the following:

`tan^-1(tan  (5pi)/6)+cos^-1{cos((13pi)/6)}`


In ΔABC, if a = 18, b = 24, c = 30 then find the values of tan `A/2`


Find the principal value of the following: cos- 1`(-1/2)`


Prove the following:

`sin^-1(3/5) + cos^-1(12/13) = sin^-1(56/65)`


`tan^-1(tan  (7pi)/6)` = ______


Find the principal value of the following:

cosec-1 (2)


Prove that:

2 tan-1 (x) = `sin^-1 ((2x)/(1 + x^2))`


Evaluate:

`cos[tan^-1 (3/4)]`


Evaluate: `cos (sin^-1 (4/5) + sin^-1 (12/13))`


Express `tan^-1 [(cos x)/(1 - sin x)], - pi/2 < x < (3pi)/2` in the simplest form.


Find the principal value of `tan^-1 (sqrt(3))`


lf `sqrt3costheta + sintheta = sqrt2`, then the general value of θ is ______ 


If sin `(sin^-1  1/3 + cos^-1 x) = 1`, then the value of x is ______.


The value of `sin^-1(cos  (53pi)/5)` is ______ 


The value of `sin^-1[cos(pi/3)] + sin^-1[tan((5pi)/4)]` is ______.


The domain of y = cos–1(x2 – 4) is ______.


`"tan"^-1 (sqrt3)`


`"sin"^-1 (1/sqrt2)`


`"cos"^-1 ["cos" (2  "cot"^-1 (sqrt2 - 1))] =` ____________.


The range of sin-1 x + cos-1 x + tan-1 x is ____________.


If `"sin"^-1("x"^2 - 7"x" + 12) = "n"pi, AA  "n" in "I"`, then x = ____________.


Domain and Rariges of cos–1 is:-


`sin(tan^-1x), |x| < 1` is equal to


Find the principal value of `cot^-1 ((-1)/sqrt(3))`


`lim_(n→∞)tan{sum_(r = 1)^n tan^-1(1/(1 + r + r^2))}` is equal to ______. 


`(tan^-1 (sqrt(3)) - sec^-1(-2))/("cosec"^-1(-sqrt(2)) + cos^-1(-1/2))` is equal to ______.


If cos–1 x > sin–1 x, then ______.


The value of `tan(cos^-1  4/5 + tan^-1  2/3)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×