हिंदी

Find the value of the following: tan-1(tan 7x6) - Mathematics

Advertisements
Advertisements

प्रश्न

Find the value of the following:

`tan^(-1) (tan  (7x)/6)`

योग

उत्तर १

We know that tan−1 (tan x) = x if `x in (-pi/2,pi/2)`, which is the principal value branch of tan −1x.

Here `(7pi)/6 !in (-pi/2, pi/2)`

Now `tan^(-1) (tan  (7pi)/6)` can be written as

`tan^(-1) (tan  (7pi)/6) = tan^(-1) [tan(2pi - (5pi)/6)]`      `[tan(2pi - x) = - tan x]`

`= tan^(-1) [-tan ((5pi)/6)] `

`= tan^(-1) [tan ((-5pi)/6)]`

` = tan^(-1) [tan(pi - (5pi)/6)]`

`= tan^(-1) [tan(pi/6)], " where"  pi/6 in (-pi/2, pi/2)`

`:. tan^(-1) (tan  (7pi)/6)`

` = tan^(-1) (tan  pi/6) = pi/6`

shaalaa.com

उत्तर २

Given, `tan^-1(tan (7pi)/6)`

We know that, for x ∈ `(-pi/2, pi/2)`, `cos^-1(cosx) = x`

= `tan^-1(tan  (7pi)/6)`

`= tan^-1(tan(pi + pi/6))`

= `tan^-1(tan  pi/6)`

`= pi/6`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Inverse Trigonometric Functions - Exercise 2.3 [पृष्ठ ५१]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 2 Inverse Trigonometric Functions
Exercise 2.3 | Q 2 | पृष्ठ ५१

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

If `tan^-1((x-1)/(x-2))+cot^-1((x+2)/(x+1))=pi/4; `


Find the value of the following:

`tan^(-1)(1) + cos^(-1) (-1/2) + sin^(-1) (-1/2)`


Find the value of the following:

If sin−1 x = y, then


`tan^(-1) sqrt3 - sec^(-1)(-2)` is equal to ______.


Find the value of the following:

`cos^(-1) (cos  (13pi)/6)`


`sin^-1{cos(sin^-1  sqrt3/2)}`


Find the domain of the following function:

`f(x)=sin^-1x+sin^-1 2x`


Evaluate the following:

`tan^-1(-1/sqrt3)+tan^-1(-sqrt3)+tan^-1(sin(-pi/2))`


Find the principal value of the following: cosec- 1(2)


Find the principal value of the following: tan-1(– 1)


Evaluate the following:

`"cosec"^-1(-sqrt(2)) + cot^-1(sqrt(3))`


Find the principal solutions of the following equation:

sin 2θ = `− 1/(sqrt2)`


Evaluate:

`sin[cos^-1 (3/5)]`


Evaluate `cos[pi/6 + cos^-1 (- sqrt(3)/2)]`


Show that `sin^-1(3/5)  + sin^-1(8/17) = cos^-1(36/85)`


Find the principal value of the following:

`sin^-1 (- 1/2)`


Find the principal value of the following:

`sec^-1 (-sqrt2)`


Evaluate:

`cos[tan^-1 (3/4)]`


Evaluate: sin`[1/2 cos^-1 (4/5)]`


If `sin^-1  3/5 + cos^-1  12/13 = sin^-1 P`, then P is equal to ______ 


The principal value of `tan^{-1(sqrt3)}` is ______  


If 2tan-1 (cos x) = tan-1 (cosec2 x), then x = ______.


`tan[2tan^-1 (1/3) - pi/4]` = ______.


The value of cot (- 1110°) is equal to ______.


`sin{tan^-1((1 - x^2)/(2x)) + cos^-1((1 - x^2)/(1 + x^2))}` is equal to ______ 


The value of `cos(pi/4 + x) - cos(pi/4 - x)` is ______.


The domain of the function defined by f(x) = sin–1x + cosx is ______.


The equation tan–1x – cot–1x = `(1/sqrt(3))` has ______.


`"cos"^-1 1/2 + 2  "sin"^-1  1/2` is equal to ____________.


`2  "tan"^-1 ("cos x") = "tan"^-1 (2  "cosec x")`


3 tan-1 a is equal to ____________.


If `"sin"^-1("x"^2 - 7"x" + 12) = "n"pi, AA  "n" in "I"`, then x = ____________.


If `"cot"^-1 (sqrt"cos" alpha) - "tan"^-1 (sqrt "cos" alpha) = "x",` then sinx is equal to ____________.


Domain and Rariges of cos–1 is:-


Value of `sin(pi/3 - sin^1 (- 1/2))` is equal to


If θ = `sin^-1((2x)/(1 + x^2)) + cos^-1((1 - x^2)/(1 + x^2))`, for `x ≥ 3/2` then the absolute value of `((cosθ + tanθ + 4)/secθ)` is ______.


Find the value of `sin(2cos^-1  sqrt(5)/3)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×