Advertisements
Advertisements
प्रश्न
Find the value of the following:
`tan^(-1) (tan (7x)/6)`
उत्तर १
We know that tan−1 (tan x) = x if `x in (-pi/2,pi/2)`, which is the principal value branch of tan −1x.
Here `(7pi)/6 !in (-pi/2, pi/2)`
Now `tan^(-1) (tan (7pi)/6)` can be written as
`tan^(-1) (tan (7pi)/6) = tan^(-1) [tan(2pi - (5pi)/6)]` `[tan(2pi - x) = - tan x]`
`= tan^(-1) [-tan ((5pi)/6)] `
`= tan^(-1) [tan ((-5pi)/6)]`
` = tan^(-1) [tan(pi - (5pi)/6)]`
`= tan^(-1) [tan(pi/6)], " where" pi/6 in (-pi/2, pi/2)`
`:. tan^(-1) (tan (7pi)/6)`
` = tan^(-1) (tan pi/6) = pi/6`
उत्तर २
Given, `tan^-1(tan (7pi)/6)`
We know that, for x ∈ `(-pi/2, pi/2)`, `cos^-1(cosx) = x`
= `tan^-1(tan (7pi)/6)`
`= tan^-1(tan(pi + pi/6))`
= `tan^-1(tan pi/6)`
`= pi/6`
APPEARS IN
संबंधित प्रश्न
If `tan^-1((x-1)/(x-2))+cot^-1((x+2)/(x+1))=pi/4; `
Find the value of the following:
`tan^(-1)(1) + cos^(-1) (-1/2) + sin^(-1) (-1/2)`
Find the value of the following:
If sin−1 x = y, then
`tan^(-1) sqrt3 - sec^(-1)(-2)` is equal to ______.
Find the value of the following:
`cos^(-1) (cos (13pi)/6)`
`sin^-1{cos(sin^-1 sqrt3/2)}`
Find the domain of the following function:
`f(x)=sin^-1x+sin^-1 2x`
Evaluate the following:
`tan^-1(-1/sqrt3)+tan^-1(-sqrt3)+tan^-1(sin(-pi/2))`
Find the principal value of the following: cosec- 1(2)
Find the principal value of the following: tan-1(– 1)
Evaluate the following:
`"cosec"^-1(-sqrt(2)) + cot^-1(sqrt(3))`
Find the principal solutions of the following equation:
sin 2θ = `− 1/(sqrt2)`
Evaluate:
`sin[cos^-1 (3/5)]`
Evaluate `cos[pi/6 + cos^-1 (- sqrt(3)/2)]`
Show that `sin^-1(3/5) + sin^-1(8/17) = cos^-1(36/85)`
Find the principal value of the following:
`sin^-1 (- 1/2)`
Find the principal value of the following:
`sec^-1 (-sqrt2)`
Evaluate:
`cos[tan^-1 (3/4)]`
Evaluate: sin`[1/2 cos^-1 (4/5)]`
If `sin^-1 3/5 + cos^-1 12/13 = sin^-1 P`, then P is equal to ______
The principal value of `tan^{-1(sqrt3)}` is ______
If 2tan-1 (cos x) = tan-1 (cosec2 x), then x = ______.
`tan[2tan^-1 (1/3) - pi/4]` = ______.
The value of cot (- 1110°) is equal to ______.
`sin{tan^-1((1 - x^2)/(2x)) + cos^-1((1 - x^2)/(1 + x^2))}` is equal to ______
The value of `cos(pi/4 + x) - cos(pi/4 - x)` is ______.
The domain of the function defined by f(x) = sin–1x + cosx is ______.
The equation tan–1x – cot–1x = `(1/sqrt(3))` has ______.
`"cos"^-1 1/2 + 2 "sin"^-1 1/2` is equal to ____________.
`2 "tan"^-1 ("cos x") = "tan"^-1 (2 "cosec x")`
3 tan-1 a is equal to ____________.
If `"sin"^-1("x"^2 - 7"x" + 12) = "n"pi, AA "n" in "I"`, then x = ____________.
If `"cot"^-1 (sqrt"cos" alpha) - "tan"^-1 (sqrt "cos" alpha) = "x",` then sinx is equal to ____________.
Domain and Rariges of cos–1 is:-
Value of `sin(pi/3 - sin^1 (- 1/2))` is equal to
If θ = `sin^-1((2x)/(1 + x^2)) + cos^-1((1 - x^2)/(1 + x^2))`, for `x ≥ 3/2` then the absolute value of `((cosθ + tanθ + 4)/secθ)` is ______.
Find the value of `sin(2cos^-1 sqrt(5)/3)`.