Advertisements
Advertisements
प्रश्न
Write the separate equations of lines represented by the equation 5x2 – 9y2 = 0
उत्तर
Given, 5x2 – 9y2 = 0
⇒ `(sqrt(5)x)^2 - (3y)^2` = 0
⇒ `(sqrt(5)x - 3y)(sqrt(5)x + 3y)` = 0
∴ The Separate equations are `sqrt(5)x + 3y` = 0 and `sqrt(5)x - 3y` = 0
APPEARS IN
संबंधित प्रश्न
Find the combined equation of the following pair of lines:
Passing through (2, 3) and perpendicular to the lines 3x + 2y – 1 = 0 and x – 3y + 2 = 0.
Find the separate equation of the line represented by the following equation:
3y2 + 7xy = 0
Find the separate equation of the line represented by the following equation:
5x2 – 9y2 = 0
Find the combined equation of the pair of a line passing through the origin and perpendicular to the line represented by following equation:
5x2 - 8xy + 3y2 = 0
Find the combined equation of the pair of a line passing through the origin and perpendicular to the line represented by the following equation:
5x2 + 2xy - 3y2 = 0
Find the combined equation of the pair of a line passing through the origin and perpendicular to the line represented by the following equation:
xy + y2 = 0
Find the combined equation of the pair of a line passing through the origin and perpendicular to the line represented by the following equation:
3x2 - 4xy = 0
The area of triangle formed by the lines x2 + 4xy + y2 = 0 and x - y - 4 = 0 is ______.
Choose correct alternatives:
The combined equation of the coordinate axes is
Choose correct alternatives:
If h2 = ab, then slopes of lines ax2 + 2hxy + by2 = 0 are in the ratio
Choose correct alternatives:
If slope of one of the lines ax2 + 2hxy + by2 = 0 is 5 times the slope of the other, then 5h2 = ______
Choose correct alternatives:
If distance between lines (x - 2y)2 + k(x - 2y) = 0 is 3 units, then k = ______.
Find the joint equation of the line:
x - y = 0 and x + y = 0
Find the joint equation of the line:
x + y - 3 = 0 and 2x + y - 1 = 0
Find the joint equation of the line passing through the origin and perpendicular to the lines x + 2y = 19 and 3x + y = 18
Show that the following equations represent a pair of line:
x2 - y2 = 0
Show that the following equations represent a pair of line:
x2 + 7xy - 2y2 = 0
Find the separate equation of the line represented by the following equation:
6x2 - 5xy - 6y2 = 0
Find the separate equation of the line represented by the following equation:
x2 - 4y2 = 0
Find the separate equation of the line represented by the following equation:
2x2 + 2xy - y2 = 0
Find the joint equation of the pair of a line through the origin and perpendicular to the lines given by
2x2 - 3xy - 9y2 = 0
Find k, if the sum of the slopes of the lines given by x2 + kxy − 3y2 = 0 is equal to their product.
Find k, if the slope of one of the lines given by 3x2 - 4xy + ky2 = 0 is 1.
Find the joint equation of the pair of lines through the origin and making an equilateral triangle with the line x = 3.
Find the combined equation of bisectors of angles between the lines represented by 5x2 + 6xy - y2 = 0.
Find an if the sum of the slope of lines represented by ax2 + 8xy + 5y2 = 0 is twice their product.
If the line 4x - 5y = 0 coincides with one of the lines given by ax2 + 2hxy + by2 = 0, then show that 25a + 40h + 16b = 0
Show that the following equation represents a pair of line. Find the acute angle between them:
2x2 + xy - y2 + x + 4y - 3 = 0
Show that the following equation represents a pair of line. Find the acute angle between them:
(x - 3)2 + (x - 3)(y - 4) - 2(y - 4)2 = 0
If the lines given by ax2 + 2hxy + by2 = 0 form an equilateral triangle with the line lx + my = 1, show that (3a + b)(a + 3b) = 4h2.
If the line x + 2 = 0 coincides with one of the lines represented by the equation x2 + 2xy + 4y + k = 0, then prove that k = - 4.
If equation ax2 - y2 + 2y + c = 1 represents a pair of perpendicular lines, then find a and c.
Show that the combined equation of pair of lines passing through the origin is a homogeneous equation of degree 2 in x and y. Hence find the combined equation of the lines 2x + 3y = 0 and x − 2y = 0
The joint equation of pair of lines through the origin, each of which makes an angle of 60° with Y-axis, is ______
The equation of line passing through the midpoint of the line joining the points (-1, 3, -2) and (-5, 3, -6) and equally inclined to the axes is ______.
The joint equation of pair of lines having slopes `1+sqrt2` and `1-sqrt2` and passing through the origin is ______.
The line 5x + y – 1 = 0 coincides with one of the lines given by 5x2 + xy – kx – 2y + 2 = 0 then the value of k is ______.
Write the joint equation of co-ordinate axes.
Find the joint equation of the pair of lines through the origin and perpendicular to the lines given by 2x2 + 7xy + 3y2 = 0
Find the combined equation of y-axis and the line through the origin having slope 3.
Find k, if one of the lines given by kx2 – 5xy – 3y2 = 0 is perpendicular to the line x – 2y + 3 = 0