Advertisements
Advertisements
प्रश्न
Choose correct alternatives:
If distance between lines (x - 2y)2 + k(x - 2y) = 0 is 3 units, then k = ______.
विकल्प
± 3
± 5`sqrt5`
0
`±3sqrt5`
उत्तर
If distance between lines (x - 2y)2 + k(x - 2y) = 0 is 3 units, then k = `±3sqrt5`
Explanation:
(x - 2y)2 + k(x - 2y) = 0
∴ (x - 2y)(x - 2y + k) = 0
∴ equations of the lines are x - 2y = 0 and x - 2y + k = 0 which are parallel to each other.
∴ `|("k" - 0)/(sqrt(1 + 4))| = 3`
∴ k = `±3sqrt5`
Notes
The answer in the textbook is incorrect.
APPEARS IN
संबंधित प्रश्न
Find the combined equation of the following pair of line:
2x + y = 0 and 3x − y = 0
Find the combined equation of the following pair of line:
x + 2y - 1 = 0 and x - 3y + 2 = 0
Find the separate equation of the line represented by the following equation:
3y2 + 7xy = 0
Find the separate equation of the line represented by the following equation:
`3"x"^2 - 2sqrt3"xy" - 3"y"^2 = 0`
Find the separate equation of the line represented by the following equation:
x2 + 2(cosec α)xy + y2 = 0
Choose correct alternatives:
The joint equation of the lines through the origin and perpendicular to the pair of lines 3x2 + 4xy – 5y2 = 0 is _______.
The area of triangle formed by the lines x2 + 4xy + y2 = 0 and x - y - 4 = 0 is ______.
Find the joint equation of the line which are at a distance of 9 units from the Y-axis.
Find the joint equation of the line passing through the point (3, 2), one of which is parallel to the line x - 2y = 2, and other is perpendicular to the line y = 3.
Find the separate equation of the line represented by the following equation:
6x2 - 5xy - 6y2 = 0
Find k, if one of the lines given by 3x2 - kxy + 5y2 = 0 is perpendicular to the line 5x + 3y = 0.
Find k, if the slope of one of the lines given by 3x2 + 4xy + ky2 = 0 is three times the other.
Find the combined equation of bisectors of angles between the lines represented by 5x2 + 6xy - y2 = 0.
If the line 4x - 5y = 0 coincides with one of the lines given by ax2 + 2hxy + by2 = 0, then show that 25a + 40h + 16b = 0
Show that the following equation represents a pair of line. Find the acute angle between them:
2x2 + xy - y2 + x + 4y - 3 = 0
Find the condition that the equation ay2 + bxy + ex + dy = 0 may represent a pair of lines.
If the lines given by ax2 + 2hxy + by2 = 0 form an equilateral triangle with the line lx + my = 1, show that (3a + b)(a + 3b) = 4h2.
Prove that the combined of the pair of lines passing through the origin and perpendicular to the lines ax2 + 2hxy + by2 = 0 is bx2 - 2hxy + ay2 = 0.
Find k if the slope of one of the lines given by 3x2 + 4xy + ky2 = 0 is three times the other.
The combined equation of the two lines passing through the origin, each making angle 45° and 135° with the positive X-axis is ______
The combined equation of the lines through origin and perpendicular to the pair of lines 3x2 + 4xy − 5y2 = 0 is ______
The joint equation of pair of lines through the origin, each of which makes an angle of 60° with Y-axis, is ______
The joint equation of the lines through the origin which forms two of the sides of the equilateral triangle having x = 2 as the third side is ______
The equation of line passing through the midpoint of the line joining the points (-1, 3, -2) and (-5, 3, -6) and equally inclined to the axes is ______.
The joint equation of pair of lines having slopes `1+sqrt2` and `1-sqrt2` and passing through the origin is ______.
The joint equation of pair of lines having slopes 2 and 5 and passing through the origin is ______.
Write the separate equations of lines represented by the equation 5x2 – 9y2 = 0
The line 5x + y – 1 = 0 coincides with one of the lines given by 5x2 + xy – kx – 2y + 2 = 0 then the value of k is ______.
If `x^2/a + y^2/b + (2xy)/h` = 0 represents a pair of lines and slope of one line is twice the other, then find the value of ab : h2.
Combined equation of the lines bisecting the angles between the coordinate axes, is ______.
Find k, if one of the lines given by kx2 – 5xy – 3y2 = 0 is perpendicular to the line x – 2y + 3 = 0