हिंदी

Find the separate equation of the line represented by the following equation: x2 + 2(cosec α)xy + y2 = 0 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the separate equation of the line represented by the following equation:

x2 + 2(cosec α)xy + y2 = 0

योग

उत्तर

x2 + 2(cosec α)xy + y2 = 0

i.e. y2 + 2(cosec α)xy + x2 = 0

Dividing by x2, we get,

`("y"/"x")^2 + 2"cosec"alpha. ("y"/"x") + 1 = 0`

`therefore "y"/"x" = (-2 "cosec" alpha  +- sqrt(4"cosec"^2 alpha - 4 xx 1 xx 1))/(2xx1)`

`= (-2 "cosec" alpha  +- 2sqrt("cosec"^2 alpha - 1))/2`

= - cosec α ± cot α

`therefore "y"/"x" = ("cot" alpha - "cosec" alpha)` and

`"y"/"x" = - ("cosec" alpha + "cot" alpha)`

The separate equations of the lines are

(cosec α - cot α) x + y = 0 and (cosec α + cot α) x + y = 0 

shaalaa.com

Notes

Answer in the textbook is incorrect.

Combined Equation of a Pair Lines
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Pair of Straight Lines - Exercise 4.1 [पृष्ठ ११९]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 4 Pair of Straight Lines
Exercise 4.1 | Q 2.6 | पृष्ठ ११९

संबंधित प्रश्न

Find the combined equation of the following pair of line:

2x + y = 0 and 3x − y = 0


Find the combined equation of the following pair of line:

x + 2y - 1 = 0 and x - 3y + 2 = 0


Find the combined equation of the following pair of lines:

Passing through (2, 3) and perpendicular to the lines 3x + 2y – 1 = 0 and x – 3y + 2 = 0.


Find the combined equation of the following pair of line passing through (−1, 2), one is parallel to x + 3y − 1 = 0 and other is perpendicular to 2x − 3y − 1 = 0


Find the separate equation of the line represented by the following equation:

5x2 – 9y2 = 0


Find the separate equation of the line represented by the following equation:

`3"x"^2 - 2sqrt3"xy" - 3"y"^2 = 0`


Find the separate equation of the line represented by the following equation:

x2 + 2xy tan α - y2 = 0


Find the combined equation of the pair of a line passing through the origin and perpendicular to the line represented by the following equation:

3x2 -  4xy = 0 


Choose correct alternatives:

The joint equation of the lines through the origin and perpendicular to the pair of lines 3x2 + 4xy – 5y2 = 0 is _______.


Choose correct alternatives:

If distance between lines (x - 2y)2 + k(x - 2y) = 0 is 3 units, then k = ______.


Find the joint equation of the line:

x - y = 0 and x + y = 0


Find the joint equation of the line:

x + y - 3 = 0 and 2x + y - 1 = 0


Find the joint equation of the line passing through the origin having slopes 2 and 3.


Show that the following equations represents a pair of line:

x2 + 2xy - y2 = 0


Show that the following equations represents a pair of line:

4x2 + 4xy + y2 = 0


Show that the following equations represent a pair of line:

x2 - y2 = 0


Find the separate equation of the line represented by the following equation:

x2 - 4y2 = 0


Find the joint equation of the pair of a line through the origin and perpendicular to the lines given by

x2 + xy - y2 = 0


Find k, if the sum of the slopes of the lines given by 3x2 + kxy - y2 = 0 is zero.


Find k, if one of the lines given by 6x2 + kxy + y2 = 0 is 2x + y = 0.


Find the joint equation of the pair of lines through the origin and making an equilateral triangle with the line x = 3.


If the line 4x - 5y = 0 coincides with one of the lines given by ax2 + 2hxy + by2 = 0, then show that 25a + 40h + 16b = 0


Show that the following equation represents a pair of line. Find the acute angle between them:

2x2 + xy - y2 + x + 4y - 3 = 0


Show that the following equation represents a pair of line. Find the acute angle between them:

(x - 3)2 + (x - 3)(y - 4) - 2(y - 4)2 = 0


Find the condition that the equation ay2 + bxy + ex + dy = 0 may represent a pair of lines. 


If the line x + 2 = 0 coincides with one of the lines represented by the equation x2 + 2xy + 4y + k = 0, then prove that k = - 4. 


If equation ax2 - y2 + 2y + c = 1 represents a pair of perpendicular lines, then find a and c.


Find the joint equation of the line passing through the origin and having slopes 1 + `sqrt3` and 1 - `sqrt3`


The combined equation of the lines through origin and perpendicular to the pair of lines 3x2 + 4xy − 5y2 = 0 is ______


The joint equation of the lines through the origin which forms two of the sides of the equilateral triangle having x = 2 as the third side is ______


The combined equation of the lines which pass through the origin and each of which makes an angle of 30° with the line 3x + 2y – 11 = 0 is ______.


Write the separate equations of lines represented by the equation 5x2 – 9y2 = 0


Find the combined equation of the pair of lines passing through the origin and perpendicular to the lines represented by 3x2 + 2xy – y2 = 0.


If `x^2/a + y^2/b + (2xy)/h` = 0 represents a pair of lines and slope of one line is twice the other, then find the value of ab : h2.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×