Advertisements
Advertisements
प्रश्न
Find the combined equation of the pair of a line passing through the origin and perpendicular to the line represented by the following equation:
3x2 - 4xy = 0
उत्तर
Consider 3x2 - 4xy = 0
∴ x(3x - 4y) = 0
∴ separate equations of the lines are x = 0 and 3x - 4y = 0
Let m1 and m2 be the slopes of these lines.
Then m1 does not exist and m2 = `3/4`
Now, required lines are perpendicular to these lines.
∴ their slopes are `- 1/"m"_1` and `- 1/"m"_2`
Since m1 does not exist, `- 1/"m"_1 = 0`
Also, m2 = `3/4, - 1/"m"_2 = - 4/3`
Since these lines are passing through the origin, their
separate equations are y = 0 and y = `- 4/3`x, i.e. 4x + 3y = 0
∴ their combined equation is
y(4x + 3y) = 0
∴ 4xy + 3y2 = 0
APPEARS IN
संबंधित प्रश्न
Find the combined equation of the following pair of line:
2x + y = 0 and 3x − y = 0
Find the combined equation of the following pair of line:
x + 2y - 1 = 0 and x - 3y + 2 = 0
Find the combined equation of the following pair of line passing through (−1, 2), one is parallel to x + 3y − 1 = 0 and other is perpendicular to 2x − 3y − 1 = 0
Find the separate equation of the line represented by the following equation:
`3"x"^2 - 2sqrt3"xy" - 3"y"^2 = 0`
Find the combined equation of the pair of a line passing through the origin and perpendicular to the line represented by following equation:
5x2 - 8xy + 3y2 = 0
Choose correct alternatives:
Auxiliary equation of 2x2 + 3xy - 9y2 = 0 is
Choose correct alternatives:
If two lines ax2 + 2hxy + by2 = 0 make angles α and β with X-axis, then tan (α + β) = _____.
Choose correct alternatives:
The combined equation of the coordinate axes is
Choose correct alternatives:
If h2 = ab, then slopes of lines ax2 + 2hxy + by2 = 0 are in the ratio
Find the joint equation of the line:
x - y = 0 and x + y = 0
Find the joint equation of the line passing through (1, 2) and parallel to the coordinate axes
Find the joint equation of the line which are at a distance of 9 units from the Y-axis.
Find the joint equation of the line passing through the origin and perpendicular to the lines x + 2y = 19 and 3x + y = 18
Find the joint equation of the line passing through (-1, 2) and perpendicular to the lines x + 2y + 3 = 0 and 3x - 4y - 5 = 0
Show that the following equations represent a pair of line:
x2 - y2 = 0
Show that the following equations represent a pair of line:
`"x"^2 - 2sqrt3"xy" - "y"^2 = 0`
Find the separate equation of the line represented by the following equation:
x2 - 4y2 = 0
Find the joint equation of the pair of a line through the origin and perpendicular to the lines given by
2x2 - 3xy - 9y2 = 0
Find the joint equation of the pair of a line through the origin and perpendicular to the lines given by
x2 + xy - y2 = 0
Find k, if the sum of the slopes of the lines given by 3x2 + kxy - y2 = 0 is zero.
Find k, if the sum of the slopes of the lines given by x2 + kxy − 3y2 = 0 is equal to their product.
Find k, if the slope of one of the lines given by 3x2 + 4xy + ky2 = 0 is three times the other.
Find the combined equation of bisectors of angles between the lines represented by 5x2 + 6xy - y2 = 0.
Find an if the sum of the slope of lines represented by ax2 + 8xy + 5y2 = 0 is twice their product.
If the line 4x - 5y = 0 coincides with one of the lines given by ax2 + 2hxy + by2 = 0, then show that 25a + 40h + 16b = 0
Find the condition that the equation ay2 + bxy + ex + dy = 0 may represent a pair of lines.
If the lines given by ax2 + 2hxy + by2 = 0 form an equilateral triangle with the line lx + my = 1, show that (3a + b)(a + 3b) = 4h2.
If the line x + 2 = 0 coincides with one of the lines represented by the equation x2 + 2xy + 4y + k = 0, then prove that k = - 4.
Find the joint equation of the line passing through the origin and having slopes 1 + `sqrt3` and 1 - `sqrt3`
The combined equation of the two lines passing through the origin, each making angle 45° and 135° with the positive X-axis is ______
The combined equation of the lines through origin and perpendicular to the pair of lines 3x2 + 4xy − 5y2 = 0 is ______
Show that the combined equation of pair of lines passing through the origin is a homogeneous equation of degree 2 in x and y. Hence find the combined equation of the lines 2x + 3y = 0 and x − 2y = 0
The joint equation of pair of straight lines passing through origin and having slopes `(1 + sqrt2) and (1/(1 + sqrt2))` is ______.
Find the joint equation of the pair of lines through the origin and perpendicular to the lines given by 2x2 + 7xy + 3y2 = 0