Advertisements
Advertisements
Question
Find the combined equation of the pair of a line passing through the origin and perpendicular to the line represented by the following equation:
3x2 - 4xy = 0
Solution
Consider 3x2 - 4xy = 0
∴ x(3x - 4y) = 0
∴ separate equations of the lines are x = 0 and 3x - 4y = 0
Let m1 and m2 be the slopes of these lines.
Then m1 does not exist and m2 = `3/4`
Now, required lines are perpendicular to these lines.
∴ their slopes are `- 1/"m"_1` and `- 1/"m"_2`
Since m1 does not exist, `- 1/"m"_1 = 0`
Also, m2 = `3/4, - 1/"m"_2 = - 4/3`
Since these lines are passing through the origin, their
separate equations are y = 0 and y = `- 4/3`x, i.e. 4x + 3y = 0
∴ their combined equation is
y(4x + 3y) = 0
∴ 4xy + 3y2 = 0
APPEARS IN
RELATED QUESTIONS
Find the combined equation of the following pair of line:
2x + y = 0 and 3x − y = 0
Find the combined equation of the following pair of line:
x + 2y - 1 = 0 and x - 3y + 2 = 0
Find the combined equation of the following pair of lines passing through point (2, 3) and parallel to the coordinate axes.
Find the combined equation of the following pair of lines:
Passing through (2, 3) and perpendicular to the lines 3x + 2y – 1 = 0 and x – 3y + 2 = 0.
Find the separate equation of the line represented by the following equation:
x2 + 2xy tan α - y2 = 0
Find the combined equation of the pair of a line passing through the origin and perpendicular to the line represented by following equation:
5x2 - 8xy + 3y2 = 0
Find the combined equation of the pair of a line passing through the origin and perpendicular to the line represented by the following equation:
5x2 + 2xy - 3y2 = 0
Find the combined equation of the pair of a line passing through the origin and perpendicular to the line represented by the following equation:
xy + y2 = 0
Choose correct alternatives:
Auxiliary equation of 2x2 + 3xy - 9y2 = 0 is
Choose correct alternatives:
If two lines ax2 + 2hxy + by2 = 0 make angles α and β with X-axis, then tan (α + β) = _____.
Choose correct alternatives:
If slope of one of the lines ax2 + 2hxy + by2 = 0 is 5 times the slope of the other, then 5h2 = ______
Choose correct alternatives:
If distance between lines (x - 2y)2 + k(x - 2y) = 0 is 3 units, then k = ______.
Find the joint equation of the line passing through the origin having slopes 2 and 3.
Show that the following equations represents a pair of line:
x2 + 2xy - y2 = 0
Show that the following equations represent a pair of line:
x2 - y2 = 0
Show that the following equations represent a pair of line:
x2 + 7xy - 2y2 = 0
Find the separate equation of the line represented by the following equation:
6x2 - 5xy - 6y2 = 0
Find the separate equation of the line represented by the following equation:
x2 - 4y2 = 0
Find the separate equation of the line represented by the following equation:
3x2 - y2 = 0
Find the separate equation of the line represented by the following equation:
2x2 + 2xy - y2 = 0
Find the joint equation of the pair of a line through the origin and perpendicular to the lines given by
x2 + 4xy - 5y2 = 0
Find the joint equation of the pair of a line through the origin and perpendicular to the lines given by
2x2 - 3xy - 9y2 = 0
Find the joint equation of the pair of a line through the origin and perpendicular to the lines given by
x2 + xy - y2 = 0
Find k, if the sum of the slopes of the lines given by 3x2 + kxy - y2 = 0 is zero.
Find k, if one of the lines given by 3x2 - kxy + 5y2 = 0 is perpendicular to the line 5x + 3y = 0.
Find k, if the slope of one of the lines given by 3x2 + 4xy + ky2 = 0 is three times the other.
If the line 4x - 5y = 0 coincides with one of the lines given by ax2 + 2hxy + by2 = 0, then show that 25a + 40h + 16b = 0
Show that the combined equation of the pair of lines passing through the origin and each making an angle α with the line x + y = 0 is x2 + 2(sec 2α)xy + y2 = 0
If the lines given by ax2 + 2hxy + by2 = 0 form an equilateral triangle with the line lx + my = 1, show that (3a + b)(a + 3b) = 4h2.
Prove that the combined of the pair of lines passing through the origin and perpendicular to the lines ax2 + 2hxy + by2 = 0 is bx2 - 2hxy + ay2 = 0.
If equation ax2 - y2 + 2y + c = 1 represents a pair of perpendicular lines, then find a and c.
The joint equation of pair of lines through the origin, each of which makes an angle of 60° with Y-axis, is ______
Write the separate equations of lines represented by the equation 5x2 – 9y2 = 0
Find the joint equation of the pair of lines through the origin and perpendicular to the lines given by 2x2 + 7xy + 3y2 = 0
Find k, if one of the lines given by kx2 – 5xy – 3y2 = 0 is perpendicular to the line x – 2y + 3 = 0