Advertisements
Advertisements
Question
Find the combined equation of the pair of a line passing through the origin and perpendicular to the line represented by the following equation:
5x2 + 2xy - 3y2 = 0
Solution
Comparing the equation 5x2 + 2xy - 3y2 = 0 with ax2 + 2hxy + by2 = 0, we get,
a = 5, 2h = 2, b= - 3
Let m1 and m2 be the slopes of the lines represented by 5x2 + 2xy - 3y2 = 0
∴ `"m"_1 + "m"_2 = (-2"h")/"b" = (-2)/-3 = 2/3` and `"m"_1 "m"_2 = "a"/"b" = 5/-3` ....(1)
Now required lines are perpendicular to these lines
∴ their slopes are `(-1)/"m"_1` and `(-1)/"m"_2`
Since these lines are passing through the origin, their separate equations are
y = `(-1)/"m"_1 "x"` and y = `(-1)/"m"_2 "x"`
i.e. m1y = - x and m2y = - x
i.e. x + m1y = 0 and x + m2y = 0
∴ their combined equation is
(x + m1y)(x + m2y) = 0
∴ x2 + (m1 + m2)xy + m1m2y2 = 0
∴ `"x"^2 + 2/3 "xy" - 5/3 "y"^2 = 0` ...[By (1)]
∴ 3x2 + 2xy - 5y2 = 0
Notes
APPEARS IN
RELATED QUESTIONS
Find the separate equation of the line represented by the following equation:
5x2 – 9y2 = 0
Find the separate equation of the line represented by the following equation:
x2 - 4xy = 0
Find the separate equation of the line represented by the following equation:
x2 + 2(cosec α)xy + y2 = 0
Find the separate equation of the line represented by the following equation:
x2 + 2xy tan α - y2 = 0
Find the combined equation of the pair of a line passing through the origin and perpendicular to the line represented by the following equation:
xy + y2 = 0
Choose correct alternatives:
If two lines ax2 + 2hxy + by2 = 0 make angles α and β with X-axis, then tan (α + β) = _____.
If the slope of one of the two lines given by `"x"^2/"a" + "2xy"/"h" + "y"^2/"b" = 0` is twice that of the other, then ab : h2 = ______.
The area of triangle formed by the lines x2 + 4xy + y2 = 0 and x - y - 4 = 0 is ______.
Choose correct alternatives:
The combined equation of the coordinate axes is
Choose correct alternatives:
If h2 = ab, then slopes of lines ax2 + 2hxy + by2 = 0 are in the ratio
Find the joint equation of the line:
x - y = 0 and x + y = 0
Find the joint equation of the line passing through (1, 2) and parallel to the coordinate axes
Find the joint equation of the line passing through the origin and perpendicular to the lines x + 2y = 19 and 3x + y = 18
Show that the following equations represents a pair of line:
4x2 + 4xy + y2 = 0
Show that the following equations represent a pair of line:
x2 + 7xy - 2y2 = 0
Show that the following equations represent a pair of line:
`"x"^2 - 2sqrt3"xy" - "y"^2 = 0`
Find the separate equation of the line represented by the following equation:
2x2 + 2xy - y2 = 0
Find k, if the sum of the slopes of the lines given by x2 + kxy − 3y2 = 0 is equal to their product.
Find k, if one of the lines given by 6x2 + kxy + y2 = 0 is 2x + y = 0.
Find the joint equation of the pair of lines through the origin and making an equilateral triangle with the line x = 3.
Find the combined equation of bisectors of angles between the lines represented by 5x2 + 6xy - y2 = 0.
Show that the following equation represents a pair of line. Find the acute angle between them:
(x - 3)2 + (x - 3)(y - 4) - 2(y - 4)2 = 0
If equation ax2 - y2 + 2y + c = 1 represents a pair of perpendicular lines, then find a and c.
The combined equation of the lines through origin and perpendicular to the pair of lines 3x2 + 4xy − 5y2 = 0 is ______
The joint equation of pair of lines having slopes `1+sqrt2` and `1-sqrt2` and passing through the origin is ______.
The combined equation of the lines which pass through the origin and each of which makes an angle of 30° with the line 3x + 2y – 11 = 0 is ______.
Write the separate equations of lines represented by the equation 5x2 – 9y2 = 0
The line 5x + y – 1 = 0 coincides with one of the lines given by 5x2 + xy – kx – 2y + 2 = 0 then the value of k is ______.
Find the combined equation of the pair of lines passing through the origin and perpendicular to the lines represented by 3x2 + 2xy – y2 = 0.
If `x^2/a + y^2/b + (2xy)/h` = 0 represents a pair of lines and slope of one line is twice the other, then find the value of ab : h2.
Find the combined equation of y-axis and the line through the origin having slope 3.