Advertisements
Advertisements
Question
Find the separate equation of the line represented by the following equation:
x2 + 2(cosec α)xy + y2 = 0
Solution
x2 + 2(cosec α)xy + y2 = 0
i.e. y2 + 2(cosec α)xy + x2 = 0
Dividing by x2, we get,
`("y"/"x")^2 + 2"cosec"alpha. ("y"/"x") + 1 = 0`
`therefore "y"/"x" = (-2 "cosec" alpha +- sqrt(4"cosec"^2 alpha - 4 xx 1 xx 1))/(2xx1)`
`= (-2 "cosec" alpha +- 2sqrt("cosec"^2 alpha - 1))/2`
= - cosec α ± cot α
`therefore "y"/"x" = ("cot" alpha - "cosec" alpha)` and
`"y"/"x" = - ("cosec" alpha + "cot" alpha)`
The separate equations of the lines are
(cosec α - cot α) x + y = 0 and (cosec α + cot α) x + y = 0
Notes
Answer in the textbook is incorrect.
APPEARS IN
RELATED QUESTIONS
Find the combined equation of the following pair of line passing through (−1, 2), one is parallel to x + 3y − 1 = 0 and other is perpendicular to 2x − 3y − 1 = 0
Find the separate equation of the line represented by the following equation:
3y2 + 7xy = 0
Find the separate equation of the line represented by the following equation:
x2 - 4xy = 0
Find the separate equation of the line represented by the following equation:
`3"x"^2 - 2sqrt3"xy" - 3"y"^2 = 0`
Find the separate equation of the line represented by the following equation:
x2 + 2xy tan α - y2 = 0
Find the combined equation of the pair of a line passing through the origin and perpendicular to the line represented by following equation:
5x2 - 8xy + 3y2 = 0
Find the combined equation of the pair of a line passing through the origin and perpendicular to the line represented by the following equation:
3x2 - 4xy = 0
Choose correct alternatives:
If the equation 3x2 – 8xy + qy2 + 2x + 14y + p = 1 represents a pair of perpendicular lines, then the values of p and q are respectively ______.
The area of triangle formed by the lines x2 + 4xy + y2 = 0 and x - y - 4 = 0 is ______.
Choose correct alternatives:
If distance between lines (x - 2y)2 + k(x - 2y) = 0 is 3 units, then k = ______.
Find the joint equation of the line:
x - y = 0 and x + y = 0
Find the joint equation of the line passing through the origin and having inclinations 60° and 120°.
Find the joint equation of the line which are at a distance of 9 units from the Y-axis.
Find the joint equation of the line passing through (-1, 2) and perpendicular to the lines x + 2y + 3 = 0 and 3x - 4y - 5 = 0
Show that the following equations represents a pair of line:
x2 + 2xy - y2 = 0
Show that the following equations represents a pair of line:
4x2 + 4xy + y2 = 0
Show that the following equations represent a pair of line:
x2 + 7xy - 2y2 = 0
Show that the following equations represent a pair of line:
`"x"^2 - 2sqrt3"xy" - "y"^2 = 0`
Find the joint equation of the pair of a line through the origin and perpendicular to the lines given by
x2 + xy - y2 = 0
Find k, if the sum of the slopes of the lines given by 3x2 + kxy - y2 = 0 is zero.
Find k, if the slope of one of the lines given by 3x2 - 4xy + ky2 = 0 is 1.
Find k, if one of the lines given by 6x2 + kxy + y2 = 0 is 2x + y = 0.
Show that the following equation represents a pair of line. Find the acute angle between them:
2x2 + xy - y2 + x + 4y - 3 = 0
Show that the following equation represents a pair of line. Find the acute angle between them:
(x - 3)2 + (x - 3)(y - 4) - 2(y - 4)2 = 0
Find the condition that the equation ay2 + bxy + ex + dy = 0 may represent a pair of lines.
Prove that the combined of the pair of lines passing through the origin and perpendicular to the lines ax2 + 2hxy + by2 = 0 is bx2 - 2hxy + ay2 = 0.
Find the joint equation of the line passing through the origin and having slopes 1 + `sqrt3` and 1 - `sqrt3`
The combined equation of the two lines passing through the origin, each making angle 45° and 135° with the positive X-axis is ______
The combined equation of the lines through origin and perpendicular to the pair of lines 3x2 + 4xy − 5y2 = 0 is ______
Show that the combined equation of pair of lines passing through the origin is a homogeneous equation of degree 2 in x and y. Hence find the combined equation of the lines 2x + 3y = 0 and x − 2y = 0
The joint equation of pair of lines through the origin, each of which makes an angle of 60° with Y-axis, is ______
The equation of line passing through the midpoint of the line joining the points (-1, 3, -2) and (-5, 3, -6) and equally inclined to the axes is ______.
The joint equation of pair of lines having slopes 2 and 5 and passing through the origin is ______.
If `x^2/a + y^2/b + (2xy)/h` = 0 represents a pair of lines and slope of one line is twice the other, then find the value of ab : h2.
Find k, if one of the lines given by kx2 – 5xy – 3y2 = 0 is perpendicular to the line x – 2y + 3 = 0