English

Show that the combined equation of pair of lines passing through the origin is a homogeneous equation of degree 2 in x and y. Hence find the combined equation of the lines 2x + 3y = 0 and x − 2y = 0 - Mathematics and Statistics

Advertisements
Advertisements

Question

Show that the combined equation of pair of lines passing through the origin is a homogeneous equation of degree 2 in x and y. Hence find the combined equation of the lines 2x + 3y = 0 and x − 2y = 0

Diagram

Solution

Let a1x + b1y = 0 and a2x + b2y = 0 be a pair of lines passing through the origin.

∴ Their combined equation is (a1x + b1y)(a2x + b2y) = 0

∴ a1a2x2 + a1b2xy + b1a2xy + b1b2y2 = 0

∴ (a1a2)x2 + (a1b2 + a2b1)xy + (b1b2)y2 = 0

In this if we put a1a2 = a, a1b2 + a2b1 = 2h, b1b2 = b, We get ax2 + 2hxy + by2 = 0 which is a homogeneous equation of degree 2 in x and y.

Now, on comparing 2x + 3y = 0 and x − 2y = 0 with a1x + b1y = 0 and a2x + b2y = 0,

we get a1 = 2, b1 = 3, a2 = 1 and b2 = −2

Substituting in equation (i), we get

2(1)x2 + [2(−2) + 1(3)]xy + 3(−2)y2 = 0

i.e., 2x2 − xy − 6y2 = 0,

Which is the required combined equation.

shaalaa.com
Combined Equation of a Pair Lines
  Is there an error in this question or solution?
Chapter 1.4: Pair of Lines - Short Answers II

RELATED QUESTIONS

Find the separate equation of the line represented by the following equation:

x2 + 2(cosec α)xy + y2 = 0


Find the combined equation of the pair of a line passing through the origin and perpendicular to the line represented by following equation:

5x2 - 8xy + 3y2 = 0 


Find the combined equation of the pair of a line passing through the origin and perpendicular to the line represented by the following equation:

xy + y2 = 0 


Find the combined equation of the pair of a line passing through the origin and perpendicular to the line represented by the following equation:

3x2 -  4xy = 0 


Choose correct alternatives:

The joint equation of the lines through the origin and perpendicular to the pair of lines 3x2 + 4xy – 5y2 = 0 is _______.


Choose correct alternatives:

If the equation 3x2 – 8xy + qy2 + 2x + 14y + p = 1 represents a pair of perpendicular lines, then the values of p and q are respectively ______.


Choose correct alternatives:

The combined equation of the coordinate axes is


Find the joint equation of the line:

x + y - 3 = 0 and 2x + y - 1 = 0


Find the joint equation of the line passing through the origin having slopes 2 and 3.


Find the joint equation of the line passing through the origin and having inclinations 60° and 120°.


Find the joint equation of the line passing through (1, 2) and parallel to the coordinate axes


Find the joint equation of the line which are at a distance of 9 units from the Y-axis.


Find the joint equation of the line passing through the point (3, 2), one of which is parallel to the line x - 2y = 2, and other is perpendicular to the line y = 3.


Find the joint equation of the line passing through (-1, 2) and perpendicular to the lines  x + 2y + 3 = 0 and 3x - 4y - 5 = 0


Show that the following equations represents a pair of line:

x2 + 2xy - y2 = 0


Find the separate equation of the line represented by the following equation:

2x2 + 2xy - y2 = 0


Find k, if the sum of the slopes of the lines given by 3x2 + kxy - y2 = 0 is zero.


Find k, if the sum of the slopes of the lines given by x2 + kxy − 3y2 = 0 is equal to their product.


Find k, if one of the lines given by 3x2 - kxy + 5y2 = 0 is perpendicular to the line 5x + 3y = 0.


Find the joint equation of the pair of lines through the origin and making an equilateral triangle with the line x = 3.


Find the combined equation of bisectors of angles between the lines represented by 5x2 + 6xy - y2 = 0.


Show that the following equation represents a pair of line. Find the acute angle between them:

(x - 3)2 + (x - 3)(y - 4) - 2(y - 4)2 = 0


Show that the combined equation of the pair of lines passing through the origin and each making an angle α with the line x + y = 0 is x2 + 2(sec 2α)xy + y2 = 0


Find the condition that the equation ay2 + bxy + ex + dy = 0 may represent a pair of lines. 


If the lines given by ax2 + 2hxy + by2 = 0 form an equilateral triangle with the line lx + my = 1, show that (3a + b)(a + 3b) = 4h2.


The joint equation of pair of straight lines passing through origin and having slopes `(1 + sqrt2) and (1/(1 + sqrt2))` is ______.


The joint equation of pair of lines through the origin, each of which makes an angle of 60° with Y-axis, is ______ 


The equation of line passing through the midpoint of the line joining the points (-1, 3, -2) and (-5, 3, -6) and equally inclined to the axes is ______.


The joint equation of pair of lines having slopes `1+sqrt2` and `1-sqrt2` and passing through the origin is ______.


The joint equation of pair of lines having slopes 2 and 5 and passing through the origin is ______.


The combined equation of the lines which pass through the origin and each of which makes an angle of 30° with the line 3x + 2y – 11 = 0 is ______.


Write the separate equations of lines represented by the equation 5x2 – 9y2 = 0


Write the joint equation of co-ordinate axes.


Find the combined equation of the pair of lines passing through the origin and perpendicular to the lines represented by 3x2 + 2xy – y2 = 0.


If `x^2/a + y^2/b + (2xy)/h` = 0 represents a pair of lines and slope of one line is twice the other, then find the value of ab : h2.


Find the joint equation of the pair of lines through the origin and perpendicular to the lines given by 2x2 + 7xy + 3y2 = 0


Find k, if one of the lines given by kx2 – 5xy – 3y2 = 0 is perpendicular to the line x – 2y + 3 = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×