English

Find k, if one of the lines given by 3x2 - kxy + 5y2 = 0 is perpendicular to the line 5x + 3y = 0. - Mathematics and Statistics

Advertisements
Advertisements

Question

Find k, if one of the lines given by 3x2 - kxy + 5y2 = 0 is perpendicular to the line 5x + 3y = 0.

Sum

Solution

The auxiliary equation of the lines given by 3x2 - kxy + 5y2 = 0 is  5m2 - km + 3 = 0

Now, one line is perpendicular to the line 5x + 3y = 0, whose slope is `- 5/3`

∴ slope of that line = m = `3/5`

∴ m = `3/5` is the root of the auxiliary equation 5m2 - km + 3 = 0

∴ `5(3/5)^2 - "k"(3/5) + 3 = 0`

∴ `9/5 - "3k"/5 + 3 = 0`

∴ 9 - 3k + 15 = 0

∴ 3k = 24

∴ k = 8

shaalaa.com
Combined Equation of a Pair Lines
  Is there an error in this question or solution?
Chapter 4: Pair of Straight Lines - Miscellaneous Exercise 4 [Page 131]

APPEARS IN

Balbharati Mathematics and Statistics 1 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
Chapter 4 Pair of Straight Lines
Miscellaneous Exercise 4 | Q 5.4 | Page 131

RELATED QUESTIONS

Find the combined equation of the following pair of line:

2x + y = 0 and 3x − y = 0


Find the combined equation of the following pair of line:

x + 2y - 1 = 0 and x - 3y + 2 = 0


Find the combined equation of the following pair of lines:

Passing through (2, 3) and perpendicular to the lines 3x + 2y – 1 = 0 and x – 3y + 2 = 0.


Find the separate equation of the line represented by the following equation:

5x2 – 9y2 = 0


Find the separate equation of the line represented by the following equation:

`3"x"^2 - 2sqrt3"xy" - 3"y"^2 = 0`


Choose correct alternatives:

Auxiliary equation of 2x2 + 3xy - 9y2 = 0 is


If the slope of one of the two lines given by `"x"^2/"a" + "2xy"/"h" + "y"^2/"b" = 0` is twice that of the other, then ab : h2 = ______.


Choose correct alternatives:

The combined equation of the coordinate axes is


Choose correct alternatives:

If slope of one of the lines ax2 + 2hxy + by2 = 0 is 5 times the slope of the other, then 5h2 = ______


Choose correct alternatives:

If distance between lines (x - 2y)2 + k(x - 2y) = 0 is 3 units, then k = ______.


Find the joint equation of the line passing through the origin and having inclinations 60° and 120°.


Find the joint equation of the line passing through (1, 2) and parallel to the coordinate axes


Find the joint equation of the line which are at a distance of 9 units from the Y-axis.


Find the joint equation of the line passing through the point (3, 2), one of which is parallel to the line x - 2y = 2, and other is perpendicular to the line y = 3.


Find the joint equation of the line passing through the origin and perpendicular to the lines x + 2y = 19 and 3x + y = 18


Show that the following equations represents a pair of line:

4x2 + 4xy + y2 = 0


Show that the following equations represent a pair of line:

x2 + 7xy - 2y2 = 0


Show that the following equations represent a pair of line:

`"x"^2 - 2sqrt3"xy" - "y"^2 = 0`


Find the separate equation of the line represented by the following equation:

3x2 - y2 = 0


Find the joint equation of the pair of a line through the origin and perpendicular to the lines given by

2x2 - 3xy - 9y2 = 0


Find k, if the sum of the slopes of the lines given by 3x2 + kxy - y2 = 0 is zero.


Find k, if the sum of the slopes of the lines given by x2 + kxy − 3y2 = 0 is equal to their product.


Find k, if the slope of one of the lines given by 3x2 + 4xy + ky2 = 0 is three times the other.


Find the joint equation of the pair of lines through the origin and making an equilateral triangle with the line x = 3.


Find the combined equation of bisectors of angles between the lines represented by 5x2 + 6xy - y2 = 0.


If the line x + 2 = 0 coincides with one of the lines represented by the equation x2 + 2xy + 4y + k = 0, then prove that k = - 4. 


Prove that the combined of the pair of lines passing through the origin and perpendicular to the lines ax2 + 2hxy + by2 = 0 is bx2 - 2hxy + ay2 = 0.


Find k if the slope of one of the lines given by 3x2 + 4xy + ky2 = 0 is three times the other.


Show that the combined equation of pair of lines passing through the origin is a homogeneous equation of degree 2 in x and y. Hence find the combined equation of the lines 2x + 3y = 0 and x − 2y = 0


The joint equation of pair of straight lines passing through origin and having slopes `(1 + sqrt2) and (1/(1 + sqrt2))` is ______.


The joint equation of pair of lines through the origin, each of which makes an angle of 60° with Y-axis, is ______ 


The joint equation of pair of lines having slopes 2 and 5 and passing through the origin is ______.


Combined equation of the lines bisecting the angles between the coordinate axes, is ______.


Find the joint equation of the pair of lines through the origin and perpendicular to the lines given by 2x2 + 7xy + 3y2 = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×