Advertisements
Advertisements
Question
Find k if the slope of one of the lines given by 3x2 + 4xy + ky2 = 0 is three times the other.
Solution
3x2 + 4xy + ky2 = 0
∴ divide by x2
`"3x"^2/"x"^2 + "4xy"/"x"^2 + "ky"^2/"x"^2 = 0`
`3 + "4y"/"x" + "ky"^2/"x"^2 = 0` ....(1)
∴ y = mx
∴ `"y"/"x" = "m"`
Put `"y"/"x" = "m"` in equation (1)
Comparing the equation km2 + 4m + 3 = 0 with ax2 + 2hxy + by2 = 0, we get,
a = k , 2h = 4, b = 3
m1 = 3m2 ...(given condition)
m1 + m2 = `"-2h"/"k" = -4/"k"`
m1m2 = `"a"/"b" = 3/"k"`
m1 + m2 = `-4/"k"`
4m2 = `-4/"k"` .....(m1 = 3m2)
m2 = `-1/"k"`
m1m2 =`3/"k"`
`3"m"_2^2 = 3/"k"` .......(m1 = 3m2)
`3(-1/"k")^2 = 3/"k"` ......(m2 = `-1/"k"`)
`1/"k"^2 = 1/"k"`
`"k"^2 = "k"`
k = 1 or k = 0
APPEARS IN
RELATED QUESTIONS
Find the combined equation of the following pair of line:
2x + y = 0 and 3x − y = 0
Find the combined equation of the following pair of lines passing through point (2, 3) and parallel to the coordinate axes.
Find the separate equation of the line represented by the following equation:
5x2 – 9y2 = 0
Find the separate equation of the line represented by the following equation:
x2 - 4xy = 0
Find the separate equation of the line represented by the following equation:
x2 + 2xy tan α - y2 = 0
Find the combined equation of the pair of a line passing through the origin and perpendicular to the line represented by the following equation:
5x2 + 2xy - 3y2 = 0
Find the combined equation of the pair of a line passing through the origin and perpendicular to the line represented by the following equation:
xy + y2 = 0
Choose correct alternatives:
Auxiliary equation of 2x2 + 3xy - 9y2 = 0 is
Choose correct alternatives:
The joint equation of the lines through the origin and perpendicular to the pair of lines 3x2 + 4xy – 5y2 = 0 is _______.
Choose correct alternatives:
If slope of one of the lines ax2 + 2hxy + by2 = 0 is 5 times the slope of the other, then 5h2 = ______
Find the joint equation of the line:
x - y = 0 and x + y = 0
Find the joint equation of the line passing through the origin having slopes 2 and 3.
Find the joint equation of the line passing through (1, 2) and parallel to the coordinate axes
Find the joint equation of the line passing through (3, 2) and parallel to the lines x = 2 and y = 3.
Find the joint equation of the line passing through the point (3, 2), one of which is parallel to the line x - 2y = 2, and other is perpendicular to the line y = 3.
Show that the following equations represents a pair of line:
x2 + 2xy - y2 = 0
Show that the following equations represents a pair of line:
4x2 + 4xy + y2 = 0
Find the separate equation of the line represented by the following equation:
x2 - 4y2 = 0
Find the joint equation of the pair of a line through the origin and perpendicular to the lines given by
2x2 - 3xy - 9y2 = 0
Find k, if the sum of the slopes of the lines given by x2 + kxy − 3y2 = 0 is equal to their product.
Find k, if the slope of one of the lines given by 3x2 + 4xy + ky2 = 0 is three times the other.
Find the joint equation of the pair of lines through the origin and making an equilateral triangle with the line x = 3.
Find an if the sum of the slope of lines represented by ax2 + 8xy + 5y2 = 0 is twice their product.
If the line 4x - 5y = 0 coincides with one of the lines given by ax2 + 2hxy + by2 = 0, then show that 25a + 40h + 16b = 0
Show that the following equation represents a pair of line. Find the acute angle between them:
2x2 + xy - y2 + x + 4y - 3 = 0
If the lines given by ax2 + 2hxy + by2 = 0 form an equilateral triangle with the line lx + my = 1, show that (3a + b)(a + 3b) = 4h2.
If the line x + 2 = 0 coincides with one of the lines represented by the equation x2 + 2xy + 4y + k = 0, then prove that k = - 4.
The equation of line passing through the midpoint of the line joining the points (-1, 3, -2) and (-5, 3, -6) and equally inclined to the axes is ______.
The joint equation of pair of lines having slopes 2 and 5 and passing through the origin is ______.
If `x^2/a + y^2/b + (2xy)/h` = 0 represents a pair of lines and slope of one line is twice the other, then find the value of ab : h2.
Find the joint equation of the pair of lines through the origin and perpendicular to the lines given by 2x2 + 7xy + 3y2 = 0