Advertisements
Advertisements
Question
Find the separate equation of the line represented by the following equation:
2x2 + 2xy - y2 = 0
Solution
2x2 + 2xy - y2 = 0
The auxiliary equation is - m2 + 2m + 2 = 0
∴ m2 - 2m - 2 = 0
∴ m = `(2 +- sqrt((-2)^2 - 4(1)(-2)))/(2xx1)`
`= (2 +- sqrt(4 + 8))/2`
`= (2+- 2sqrt3)/2`
`= 1 +- sqrt3`
∴ m1 = 1 + `sqrt3` and m2 = 1 - `sqrt3` are the slopes of the lines.
∴ their separate equations are
y = m1x and y = m2x
i.e. y = `(1 + sqrt3)"x"` and y = `(1 - sqrt3)"x"`
i.e. `(sqrt3 + 1)"x" - "y" = 0` and `(sqrt3 - 1)"x" + "y" = 0`
APPEARS IN
RELATED QUESTIONS
Find the combined equation of the following pair of line:
x + 2y - 1 = 0 and x - 3y + 2 = 0
Find the combined equation of the following pair of lines:
Passing through (2, 3) and perpendicular to the lines 3x + 2y – 1 = 0 and x – 3y + 2 = 0.
Find the separate equation of the line represented by the following equation:
3y2 + 7xy = 0
Find the separate equation of the line represented by the following equation:
5x2 – 9y2 = 0
Find the separate equation of the line represented by the following equation:
`3"x"^2 - 2sqrt3"xy" - 3"y"^2 = 0`
Find the separate equation of the line represented by the following equation:
x2 + 2xy tan α - y2 = 0
Find the combined equation of the pair of a line passing through the origin and perpendicular to the line represented by the following equation:
5x2 + 2xy - 3y2 = 0
The area of triangle formed by the lines x2 + 4xy + y2 = 0 and x - y - 4 = 0 is ______.
Choose correct alternatives:
The combined equation of the coordinate axes is
Choose correct alternatives:
If distance between lines (x - 2y)2 + k(x - 2y) = 0 is 3 units, then k = ______.
Find the joint equation of the line:
x - y = 0 and x + y = 0
Find the joint equation of the line:
x + y - 3 = 0 and 2x + y - 1 = 0
Find the joint equation of the line passing through the origin having slopes 2 and 3.
Find the joint equation of the line passing through the origin and having inclinations 60° and 120°.
Find the joint equation of the line passing through the origin and perpendicular to the lines x + 2y = 19 and 3x + y = 18
Show that the following equations represents a pair of line:
x2 + 2xy - y2 = 0
Show that the following equations represents a pair of line:
4x2 + 4xy + y2 = 0
Show that the following equations represent a pair of line:
x2 + 7xy - 2y2 = 0
Show that the following equations represent a pair of line:
`"x"^2 - 2sqrt3"xy" - "y"^2 = 0`
Find the separate equation of the line represented by the following equation:
6x2 - 5xy - 6y2 = 0
Find the separate equation of the line represented by the following equation:
3x2 - y2 = 0
Find the joint equation of the pair of a line through the origin and perpendicular to the lines given by
x2 + 4xy - 5y2 = 0
Find k, if one of the lines given by 3x2 - kxy + 5y2 = 0 is perpendicular to the line 5x + 3y = 0.
Find the joint equation of the pair of lines through the origin and making an equilateral triangle with the line x = 3.
Find the combined equation of bisectors of angles between the lines represented by 5x2 + 6xy - y2 = 0.
Find an if the sum of the slope of lines represented by ax2 + 8xy + 5y2 = 0 is twice their product.
Show that the following equation represents a pair of line. Find the acute angle between them:
(x - 3)2 + (x - 3)(y - 4) - 2(y - 4)2 = 0
Prove that the combined of the pair of lines passing through the origin and perpendicular to the lines ax2 + 2hxy + by2 = 0 is bx2 - 2hxy + ay2 = 0.
If equation ax2 - y2 + 2y + c = 1 represents a pair of perpendicular lines, then find a and c.
Find k if the slope of one of the lines given by 3x2 + 4xy + ky2 = 0 is three times the other.
The joint equation of pair of straight lines passing through origin and having slopes `(1 + sqrt2) and (1/(1 + sqrt2))` is ______.
The equation of line passing through the midpoint of the line joining the points (-1, 3, -2) and (-5, 3, -6) and equally inclined to the axes is ______.
The line 5x + y – 1 = 0 coincides with one of the lines given by 5x2 + xy – kx – 2y + 2 = 0 then the value of k is ______.
Combined equation of the lines bisecting the angles between the coordinate axes, is ______.
Find the joint equation of the pair of lines through the origin and perpendicular to the lines given by 2x2 + 7xy + 3y2 = 0
Find k, if one of the lines given by kx2 – 5xy – 3y2 = 0 is perpendicular to the line x – 2y + 3 = 0