Advertisements
Advertisements
Question
If equation ax2 - y2 + 2y + c = 1 represents a pair of perpendicular lines, then find a and c.
Solution
The given equation represents a pair of lines perpendicular to each other.
∴ coefficient of x2 + coefficient of y2 = 0
∴ a - 1 = 0
∴ a = 1
With this value of a, the given equation is
x2 - y2 + 2y + c - 1 = 0
Comparing this equation with
Ax2 + 2Hxy + By2 + 2Gx + 2Fy + C = 0, we get,
A = 1, H = 0, B = -1, G = 0, F = 1, C = c - 1
Since the given equation represents a pair of lines,
D = `|("A","H","G"),("H","B","F"),("G","F","C")| = 0`
∴ `|(1,0,0),(0,-1,1),(0,1,"c - 1")| = 0`
∴ 1(- c + 1 - 1) - 0 + 0 = 0
∴ - c = 0
∴ c = 0
Hence, a = 1, c = 0.
APPEARS IN
RELATED QUESTIONS
Find the combined equation of the following pair of line:
2x + y = 0 and 3x − y = 0
Find the combined equation of the following pair of line passing through (−1, 2), one is parallel to x + 3y − 1 = 0 and other is perpendicular to 2x − 3y − 1 = 0
Find the separate equation of the line represented by the following equation:
3y2 + 7xy = 0
Find the separate equation of the line represented by the following equation:
x2 + 2(cosec α)xy + y2 = 0
Find the separate equation of the line represented by the following equation:
x2 + 2xy tan α - y2 = 0
Find the combined equation of the pair of a line passing through the origin and perpendicular to the line represented by the following equation:
xy + y2 = 0
Find the joint equation of the line:
x - y = 0 and x + y = 0
Find the joint equation of the line passing through the origin and having inclinations 60° and 120°.
Find the joint equation of the line which are at a distance of 9 units from the Y-axis.
Show that the following equations represents a pair of line:
x2 + 2xy - y2 = 0
Show that the following equations represent a pair of line:
x2 - y2 = 0
Show that the following equations represent a pair of line:
`"x"^2 - 2sqrt3"xy" - "y"^2 = 0`
Find the separate equation of the line represented by the following equation:
6x2 - 5xy - 6y2 = 0
Find the separate equation of the line represented by the following equation:
x2 - 4y2 = 0
Find the separate equation of the line represented by the following equation:
3x2 - y2 = 0
Find the joint equation of the pair of a line through the origin and perpendicular to the lines given by
x2 + 4xy - 5y2 = 0
Find k, if one of the lines given by 6x2 + kxy + y2 = 0 is 2x + y = 0.
If the line 4x - 5y = 0 coincides with one of the lines given by ax2 + 2hxy + by2 = 0, then show that 25a + 40h + 16b = 0
Show that the following equation represents a pair of line. Find the acute angle between them:
2x2 + xy - y2 + x + 4y - 3 = 0
Show that the combined equation of the pair of lines passing through the origin and each making an angle α with the line x + y = 0 is x2 + 2(sec 2α)xy + y2 = 0
If the lines given by ax2 + 2hxy + by2 = 0 form an equilateral triangle with the line lx + my = 1, show that (3a + b)(a + 3b) = 4h2.
Find k if the slope of one of the lines given by 3x2 + 4xy + ky2 = 0 is three times the other.
The equation of line passing through the midpoint of the line joining the points (-1, 3, -2) and (-5, 3, -6) and equally inclined to the axes is ______.
The joint equation of pair of lines having slopes 2 and 5 and passing through the origin is ______.
Write the separate equations of lines represented by the equation 5x2 – 9y2 = 0
Find the combined equation of the pair of lines passing through the origin and perpendicular to the lines represented by 3x2 + 2xy – y2 = 0.
Combined equation of the lines bisecting the angles between the coordinate axes, is ______.
Find the joint equation of the pair of lines through the origin and perpendicular to the lines given by 2x2 + 7xy + 3y2 = 0
Find the combined equation of y-axis and the line through the origin having slope 3.
Find k, if one of the lines given by kx2 – 5xy – 3y2 = 0 is perpendicular to the line x – 2y + 3 = 0