English

Find k, if one of the lines given by 6x2 + kxy + y2 = 0 is 2x + y = 0. - Mathematics and Statistics

Advertisements
Advertisements

Question

Find k, if one of the lines given by 6x2 + kxy + y2 = 0 is 2x + y = 0.

Sum

Solution

The auxiliary equation of the lines represented by 6x2 + kxy + y2 = 0 is m2 + km + 6 = 0

Since one of the line is 2x + y = 0 whose slope is m = - 2.

∴ m = - 2 is the root of the auxiliary equation m2 + km + 6 = 0.

∴ (-2)2 + k(-2) + 6 = 0

∴ 4 - 2k + 6 = 0

∴ 2k = 10

∴ k = 5 

shaalaa.com
Combined Equation of a Pair Lines
  Is there an error in this question or solution?
Chapter 4: Pair of Straight Lines - Miscellaneous Exercise 4 [Page 131]

APPEARS IN

Balbharati Mathematics and Statistics 1 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
Chapter 4 Pair of Straight Lines
Miscellaneous Exercise 4 | Q 5.7 | Page 131

RELATED QUESTIONS

Find the combined equation of the following pair of lines passing through point (2, 3) and parallel to the coordinate axes.


Find the separate equation of the line represented by the following equation:

3y2 + 7xy = 0 


Find the separate equation of the line represented by the following equation:

5x2 – 9y2 = 0


Find the separate equation of the line represented by the following equation:

`3"x"^2 - 2sqrt3"xy" - 3"y"^2 = 0`


Find the separate equation of the line represented by the following equation:

x2 + 2(cosec α)xy + y2 = 0


Choose correct alternatives:

Auxiliary equation of 2x2 + 3xy - 9y2 = 0 is


Choose correct alternatives:

If two lines ax2 + 2hxy + by2 = 0 make angles α and β with X-axis, then tan (α + β) = _____.


The area of triangle formed by the lines x2 + 4xy + y2 = 0 and x - y - 4 = 0 is ______.


Choose correct alternatives:

The combined equation of the coordinate axes is


Choose correct alternatives:

If slope of one of the lines ax2 + 2hxy + by2 = 0 is 5 times the slope of the other, then 5h2 = ______


Find the joint equation of the line:

x + y - 3 = 0 and 2x + y - 1 = 0


Find the joint equation of the line passing through the origin having slopes 2 and 3.


Find the joint equation of the line passing through (3, 2) and parallel to the lines x = 2 and y  = 3.


Find the joint equation of the line passing through the origin and perpendicular to the lines x + 2y = 19 and 3x + y = 18


Find the joint equation of the line passing through (-1, 2) and perpendicular to the lines  x + 2y + 3 = 0 and 3x - 4y - 5 = 0


Show that the following equations represent a pair of line:

x2 - y2 = 0


Show that the following equations represent a pair of line:

x2 + 7xy - 2y2 = 0


Find the separate equation of the line represented by the following equation:

6x2 - 5xy - 6y2 = 0


Find the separate equation of the line represented by the following equation:

x2 - 4y2 = 0


Find the separate equation of the line represented by the following equation:

3x2 - y2 = 0


Find the joint equation of the pair of lines through the origin and making an equilateral triangle with the line x = 3.


Find the combined equation of bisectors of angles between the lines represented by 5x2 + 6xy - y2 = 0.


Find an if the sum of the slope of lines represented by ax2 + 8xy + 5y2 = 0 is twice their product.


Show that the following equation represents a pair of line. Find the acute angle between them:

(x - 3)2 + (x - 3)(y - 4) - 2(y - 4)2 = 0


Find the condition that the equation ay2 + bxy + ex + dy = 0 may represent a pair of lines. 


If the lines given by ax2 + 2hxy + by2 = 0 form an equilateral triangle with the line lx + my = 1, show that (3a + b)(a + 3b) = 4h2.


Prove that the combined of the pair of lines passing through the origin and perpendicular to the lines ax2 + 2hxy + by2 = 0 is bx2 - 2hxy + ay2 = 0.


If equation ax2 - y2 + 2y + c = 1 represents a pair of perpendicular lines, then find a and c.


The joint equation of pair of lines through the origin, each of which makes an angle of 60° with Y-axis, is ______ 


The joint equation of the lines through the origin which forms two of the sides of the equilateral triangle having x = 2 as the third side is ______


The joint equation of pair of lines having slopes 2 and 5 and passing through the origin is ______.


Write the separate equations of lines represented by the equation 5x2 – 9y2 = 0


Combined equation of the lines bisecting the angles between the coordinate axes, is ______.


Find the joint equation of the pair of lines through the origin and perpendicular to the lines given by 2x2 + 7xy + 3y2 = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×